Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Vishnu C. Ramani is active.

Publication


Featured researches published by Vishnu C. Ramani.


Cancer Research | 2005

Tumor-Derived Interleukin-8 Stimulates Osteolysis Independent of the Receptor Activator of Nuclear Factor-κB Ligand Pathway

Manali S. Bendre; Aaron G. Margulies; Brandon Walser; Nisreen S. Akel; Sudeepa Bhattacharrya; Robert A. Skinner; Frances L. Swain; Vishnu C. Ramani; Khalid S. Mohammad; Lisa L. Wessner; Alfredo Martínez; Theresa A. Guise; John M. Chirgwin; Dana Gaddy; Larry J. Suva

Bone is a common site of cancer metastasis. Breast, prostate, and lung cancers show a predilection to metastasize to bone. Recently, we reported that the chemokine interleukin 8 (IL-8) stimulates both human osteoclast formation and bone resorption. IL-8 mRNA expression was surveyed in a panel of human breast cancer lines MDA-MET, MDA-MB-231, MDA-MB-435, MCF-7, T47D, and ZR-75, and the human lung adenocarcinoma cell line A549. IL-8 mRNA expression was higher in cell lines with higher osteolytic potential in vivo. Human osteoclast formation was increased by MDA-MET or A549 cell-conditioned medium, but not by MDA-MB-231. Pharmacologic doses of receptor activator of nuclear factor-kappaB (RANK)-Fc or osteoprotogerin had no effect on the pro-osteoclastogenic activity of the conditioned medium; however, osteoclast formation stimulated by conditioned medium was inhibited 60% by an IL-8-specific neutralizing antibody. The data support a model in which tumor cells cause osteolytic bone destruction independently of the RANK ligand (RANKL) pathway. Tumor-produced IL-8 is a major contributor to this process. The role of secreted IL-8 isoforms was examined by surface-enhanced laser desorption/ionization time-of-flight mass spectrometry, which detected distinct IL-8 isoforms secreted by MDA-MET and MDA-231 cells, suggesting different pro-osteoclastogenic activities of the two IL-8-derived peptides. These data indicate that (a) osteoclast formation induced by MDA-MET breast cancer cells and A549 adenocarcinoma cells is primarily mediated by IL-8, (b) cell-specific isoforms of IL-8 with distinct osteoclastogenic activities are produced by tumor cells, and (c) tumor cells that support osteoclast formation independent of RANKL secrete other pro-osteoclastogenic factors in addition to IL-8.


Clinical Cancer Research | 2011

SST0001, a Chemically Modified Heparin, Inhibits Myeloma Growth and Angiogenesis via Disruption of the Heparanase/Syndecan-1 Axis

Joseph P. Ritchie; Vishnu C. Ramani; Yongsheng Ren; Annamaria Naggi; Giangiacomo Torri; Benito Casu; Sergio Penco; Claudio Pisano; Paolo Carminati; Monica Tortoreto; Franco Zunino; Israel Vlodavsky; Ralph D. Sanderson; Yang Yang

Purpose: Heparanase promotes myeloma growth, dissemination, and angiogenesis through modulation of the tumor microenvironment, thus highlighting the potential of therapeutically targeting this enzyme. SST0001, a nonanticoagulant heparin with antiheparanase activity, was examined for its inhibition of myeloma tumor growth in vivo and for its mechanism of action. Experimental Design: The ability of SST0001 to inhibit growth of myeloma tumors was assessed using multiple animal models and a diverse panel of human and murine myeloma cell lines. To investigate the mechanism of action of SST0001, pharmacodynamic markers of angiogenesis, heparanase activity, and pathways downstream of heparanase were monitored. The potential use of SST0001 as part of a combination therapy was also evaluated in vivo. Results: SST0001 effectively inhibited myeloma growth in vivo, even when confronted with an aggressively growing tumor within human bone. In addition, SST0001 treatment causes changes within tumors consistent with the compounds ability to inhibit heparanase, including downregulation of HGF, VEGF, and MMP-9 expression and suppressed angiogenesis. SST0001 also diminishes heparanase-induced shedding of syndecan-1, a heparan sulfate proteoglycan known to be a potent promoter of myeloma growth. SST0001 inhibited the heparanase-mediated degradation of syndecan-1 heparan sulfate chains, thus confirming the antiheparanase activity of this compound. In combination with dexamethasone, SST0001 blocked tumor growth in vivo presumably through dual targeting of the tumor and its microenvironment. Conclusions: These results provide mechanistic insight into the antitumor action of SST0001 and validate its use as a novel therapeutic tool for treating multiple myeloma. Clin Cancer Res; 17(6); 1382–93. ©2011 AACR.


Journal of Biological Chemistry | 2013

Heparanase regulates secretion, composition and function of tumor cell-derived exosomes

Camilla A. Thompson; Anurag Purushothaman; Vishnu C. Ramani; Israel Vlodavsky; Ralph D. Sanderson

Background: Heparanase drives the progression of many tumor types. Results: Heparanase enhances exosome secretion and alters exosome composition and function. Conclusion: Heparanase promotes tumor progression by regulating exosome secretion and composition. Significance: Therapeutic inhibition of heparanase may decrease exosome secretion and slow tumor progression. Emerging evidence indicates that exosomes play a key role in tumor-host cross-talk and that exosome secretion, composition, and functional capacity are altered as tumors progress to an aggressive phenotype. However, little is known regarding the mechanisms that regulate these changes. Heparanase is an enzyme whose expression is up-regulated as tumors become more aggressive and is associated with enhanced tumor growth, angiogenesis, and metastasis. We have discovered that in human cancer cells (myeloma, lymphoblastoid, and breast cancer), when expression of heparanase is enhanced or when tumor cells are exposed to exogenous heparanase, exosome secretion is dramatically increased. Heparanase enzyme activity is required for robust enhancement of exosome secretion because enzymatically inactive forms of heparanase, even when present in high amounts, do not dramatically increase exosome secretion. Heparanase also impacts exosome protein cargo as reflected by higher levels of syndecan-1, VEGF, and hepatocyte growth factor in exosomes secreted by heparanase-high expressing cells as compared with heparanase-low expressing cells. In functional assays, exosomes from heparanase-high cells stimulated spreading of tumor cells on fibronectin and invasion of endothelial cells through extracellular matrix better than did exosomes secreted by heparanase-low cells. These studies reveal that heparanase helps drive exosome secretion, alters exosome composition, and facilitates production of exosomes that impact both tumor and host cell behavior, thereby promoting tumor progression.


FEBS Journal | 2013

The heparanase/syndecan‐1 axis in cancer: mechanisms and therapies

Vishnu C. Ramani; Anurag Purushothaman; Mark D. Stewart; Camilla A. Thompson; Israel Vlodavsky; Jessie L-S. Au; Ralph D. Sanderson

Heparanase is an endoglucuronidase that cleaves heparan sulfate chains of proteoglycans. In many malignancies, high heparanase expression and activity correlate with an aggressive tumour phenotype. A major consequence of heparanase action in cancer is a robust up‐regulation of growth factor expression and increased shedding of syndecan‐1 (a transmembrane heparan sulfate proteoglycan). Substantial evidence indicates that heparanase and syndecan‐1 work together to drive growth factor signalling and regulate cell behaviours that enhance tumour growth, dissemination, angiogenesis and osteolysis. Preclinical and clinical studies have demonstrated that therapies targeting the heparanase/syndecan‐1 axis hold promise for blocking the aggressive behaviour of cancer.


Cancer | 2007

Kallikrein 7 enhances pancreatic cancer cell invasion by shedding E-cadherin

Sarah K. Johnson; Vishnu C. Ramani; Leah Hennings; Randy S. Haun

Pancreatic cancer (PaC) is characterized by local invasion and early metastasis. Serine proteases have been associated with invasion and metastasis of many cancers due to their ability to degrade extracellular matrix (ECM) proteins and to activate other proteases; thus, the serine proteases expressed in PaC were investigated.


Molecular Oncology | 2016

Circulating tumor cell technologies

Meghaan M. Ferreira; Vishnu C. Ramani; Stefanie S. Jeffrey

Circulating tumor cells, a component of the “liquid biopsy”, hold great potential to transform the current landscape of cancer therapy. A key challenge to unlocking the clinical utility of CTCs lies in the ability to detect and isolate these rare cells using methods amenable to downstream characterization and other applications. In this review, we will provide an overview of current technologies used to detect and capture CTCs with brief insights into the workings of individual technologies. We focus on the strategies employed by different platforms and discuss the advantages of each. As our understanding of CTC biology matures, CTC technologies will need to evolve, and we discuss some of the present challenges facing the field in light of recent data encompassing epithelial‐to‐mesenchymal transition, tumor‐initiating cells, and CTC clusters.


Journal of Biological Chemistry | 2011

Heparanase Plays a Dual Role in Driving Hepatocyte Growth Factor (HGF) Signaling by Enhancing HGF Expression and Activity

Vishnu C. Ramani; Yang Yang; Yongsheng Ren; Li Nan; Ralph D. Sanderson

Hepatocyte growth factor (HGF) is a heparin-binding cytokine that enhances growth, motility, and angiogenesis of many tumor types, including multiple myeloma where it is often highly expressed. However, little is known regarding what controls HGF level and activity in these tumors. Evaluation of bone marrow biopsies from myeloma patients revealed a strong positive correlation between the levels of HGF and heparanase, an endoglucuronidase known to promote aggressive tumor behavior. In vitro, addition of recombinant heparanase to myeloma cells or transfection of myeloma cell lines with the cDNA for heparanase significantly increased tumor cell expression and secretion of biologically active HGF. Shed syndecan-1, whose levels in myeloma are also enhanced by heparanase expression, binds to secreted HGF. This syndecan-1-HGF complex is active as shown by its ability to stimulate paracrine signaling via c-Met, the cell surface receptor for HGF. Surprisingly, heparanase enzyme activity was not required for up-regulation of HGF expression by the tumor cells. This is in contrast to the heparanase-mediated enhanced syndecan-1 shedding, which does require activity of the enzyme. This suggests that two different functional domains within the heparanase enzyme (the enzyme active site and a separate site) contribute to events leading to enhanced HGF signaling. These findings demonstrate a novel mechanism driving the HGF pathway whereby heparanase stimulates an increase in both HGF expression and syndecan-1 shedding to enhance HGF signaling. This work also provides further mechanistic insight into the dynamic role of heparanase in driving aggressive tumor progression.


Journal of Biological Chemistry | 2012

Heparan Sulfate Chains of Syndecan-1 Regulate Ectodomain Shedding

Vishnu C. Ramani; Pamela S. Pruett; Camilla A. Thompson; Lawrence D. DeLucas; Ralph D. Sanderson

Background: Syndecan ectodomains shed by cells can enhance progression of cancer, inflammatory disease, and pathogen infection. Results: Reducing the amount of heparan sulfate present on syndecan core proteins increases shedding of the ectodomain. Conclusion: Heparan sulfate chains suppress syndecan shedding. Significance: Therapeutic inhibition of heparan sulfate degradation could slow disease progression. Matrix metalloproteinases release intact syndecan-1 ectodomains from the cell surface giving rise to a soluble, shed form of the proteoglycan. Although it is known that shed syndecan-1 controls diverse pathophysiological responses in cancer, wound healing, inflammation, infection, and immunity, the mechanisms regulating shedding remain unclear. We have discovered that the heparan sulfate chains present on syndecan core proteins suppress shedding of the proteoglycan. Syndecan shedding is dramatically enhanced when the heparan sulfate chains are enzymatically degraded or absent from the core protein. Exogenous heparan sulfate or heparin does not inhibit shedding, indicating that heparan sulfate must be attached to the core protein to suppress shedding. Regulation of shedding by heparan sulfate occurs in multiple cell types, for both syndecan-1 and syndecan-4 and in murine and human syndecans. Mechanistically, the loss of heparan sulfate enhances the susceptibility of the core protein to proteolytic cleavage by matrix metalloproteinases. Enhanced shedding of syndecan-1 following loss of heparan sulfate is accompanied by a dramatic increase in core protein synthesis. This suggests that in response to an increase in the rate of shedding, cells attempt to maintain a significant level of syndecan-1 on the cell surface. Together these data indicate that the amount of heparan sulfate present on syndecan core proteins regulates both the rate of syndecan shedding and core protein synthesis. These findings assign new functions to heparan sulfate chains, thereby broadening our understanding of their physiological importance and implying that therapeutic inhibition of heparan sulfate degradation could impact the progression of some diseases.


Cancer Research | 2010

Heparanase Enhances Local and Systemic Osteolysis in Multiple Myeloma by Upregulating the Expression and Secretion of RANKL

Yang Yang; Yongsheng Ren; Vishnu C. Ramani; Li Nan; Larry J. Suva; Ralph D. Sanderson

Excessive bone destruction is a major cause of morbidity in myeloma patients. However, the biological mechanisms involved in the pathogenesis of myeloma-induced bone disease are not fully understood. Heparanase, an enzyme that cleaves the heparan sulfate chains of proteoglycans, is upregulated in a variety of human tumors, including multiple myeloma. We previously showed that heparanase promotes robust myeloma tumor growth and supports spontaneous metastasis of tumor cells to bone. In the present study, we show, for the first time, that the expression of heparanase by myeloma tumor cells remarkably enhances bone destruction locally within the tumor microenvironment. In addition, enhanced heparanase expression in the primary tumor also stimulated systemic osteoclastogenesis and osteolysis, thus mimicking the systemic osteoporosis often seen in myeloma patients. These effects occur, at least in part, as the result of a significant elevation in the expression and secretion of receptor activator of NF-κB ligand (RANKL) by heparanase-expressing myeloma cells. Moreover, analysis of bone marrow biopsies from myeloma patients reveals a positive correlation between the level of expression of heparanase and RANKL. Together, these discoveries reveal a novel and key role for heparanase in promoting tumor osteolysis and show that RANKL is central to the mechanism of heparanase-mediated osteolysis in myeloma.


BMC Cancer | 2008

Desmoglein 2 is a substrate of kallikrein 7 in pancreatic cancer

Vishnu C. Ramani; Leah Hennings; Randy S. Haun

BackgroundIn a previous report we have demonstrated that the chymotryptic-like serine protease kallikrein 7 (KLK7/hK7) is overexpressed in pancreatic cancer. In normal skin, hK7 is thought to participate in skin desquamation by contributing in the degradation of desmosomal components, such as desmogleins. Thus, the ability of hK7 to degrade desmogleins was assessed and the effect of hK7 expression on desmoglein 2 was examined in cultured pancreatic cancer cells.MethodsThe expression of Dsg1, Dsg2, and Dsg3 in pancreatic tissues was examined by immunohistochemistry and their expression in two pancreatic cancer cell lines, BxPC-3 and Panc-1, was determined by western blot analysis. The ability of hK7 to degrade Dsg1 and Dsg2 was investigated using in vitro degradation assays. BxPC-3 cells stably transfected to overexpress hK7 were used to examine the effect of hK7 on cell-surface resident Dsg2.ResultsThe levels of immunoreactive Dsg1 and Dsg2 were reduced in pancreatic adenocarcinomas compared with both normal pancreatic and chronic pancreatitis tissues. Among the desmosomal proteins examined, Dsg2 exhibited robust expression on the surface of BxPC-3 cells. When hK7 was overexpressed in this cell line, there was a significant increase in the amount of soluble Dsg2 released into the culture medium compared with vector-transfected control cells.ConclusionA reduction in the amount of the cell adhesion components Dsg1 and Dsg2 in pancreatic tumors suggests that loss of these desmosomal proteins may play a role in pancreatic cancer invasion. Using in vitro degradation assays, both Dsg1 and Dsg2 could be readily proteolyzed by hK7, which is overexpressed in pancreatic adenocarcinomas. The enforced expression of hK7 in BxPC-3 cells that express significant amounts of Dsg2 resulted in a marked increase in the shedding of soluble Dsg2, which is consistent with the notion that aberrant expression of hK7 in pancreatic tumors may result in diminished cell-cell adhesion and facilitate tumor cell invasion.

Collaboration


Dive into the Vishnu C. Ramani's collaboration.

Top Co-Authors

Avatar

Ralph D. Sanderson

University of Alabama at Birmingham

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Randy S. Haun

University of Arkansas for Medical Sciences

View shared research outputs
Top Co-Authors

Avatar

Israel Vlodavsky

Rappaport Faculty of Medicine

View shared research outputs
Top Co-Authors

Avatar

Anurag Purushothaman

University of Alabama at Birmingham

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yang Yang

University of Alabama at Birmingham

View shared research outputs
Top Co-Authors

Avatar

Camilla A. Thompson

University of Alabama at Birmingham

View shared research outputs
Top Co-Authors

Avatar

James Che

University of California

View shared research outputs
Researchain Logo
Decentralizing Knowledge