Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Vishnu P. Murty is active.

Publication


Featured researches published by Vishnu P. Murty.


Neuropsychologia | 2010

fMRI studies of successful emotional memory encoding: a quantitative meta-analysis

Vishnu P. Murty; Maureen Ritchey; R. Alison Adcock; Kevin S. LaBar

Over the past decade, fMRI techniques have been increasingly used to interrogate the neural correlates of successful emotional memory encoding. These investigations have typically aimed to either characterize the contributions of the amygdala and medial temporal lobe (MTL) memory system, replicating results in animals, or delineate the neural correlates of specific behavioral phenomena. It has remained difficult, however, to synthesize these findings into a systems neuroscience account of how networks across the whole-brain support the enhancing effects of emotion on memory encoding. To this end, the present study employed a meta-analytic approach using activation likelihood estimates to assess the anatomical specificity and reliability of event-related fMRI activations related to successful memory encoding for emotional versus neutral information. The meta-analysis revealed consistent clusters within bilateral amygdala, anterior hippocampus, anterior and posterior parahippocampal gyrus, the ventral visual stream, left lateral prefrontal cortex and right ventral parietal cortex. The results within the amygdala and MTL support a wealth of findings from the animal literature linking these regions to arousal-mediated memory effects. The consistency of findings in cortical targets, including the visual, prefrontal, and parietal cortices, underscores the importance of generating hypotheses regarding their participation in emotional memory formation. In particular, we propose that the amygdala interacts with these structures to promote enhancements in perceptual processing, semantic elaboration, and attention, which serve to benefit subsequent memory for emotional material. These findings may motivate future research on emotional modulation of widespread neural systems and the implications of this modulation for cognition.


The Journal of Neuroscience | 2011

Dorsolateral Prefrontal Cortex Drives Mesolimbic Dopaminergic Regions to Initiate Motivated Behavior

Ballard Ic; Vishnu P. Murty; R.M. Carter; Jeff MacInnes; Scott A. Huettel; Adcock Ra

How does the brain translate information signaling potential rewards into motivation to get them? Motivation to obtain reward is thought to depend on the midbrain [particularly the ventral tegmental area (VTA)], the nucleus accumbens (NAcc), and the dorsolateral prefrontal cortex (dlPFC), but it is not clear how the interactions among these regions relate to reward-motivated behavior. To study the influence of motivation on these reward-responsive regions and on their interactions, we used dynamic causal modeling to analyze functional magnetic resonance imaging (fMRI) data from humans performing a simple task designed to isolate reward anticipation. The use of fMRI permitted the simultaneous measurement of multiple brain regions while human participants anticipated and prepared for opportunities to obtain reward, thus allowing characterization of how information about reward changes physiology underlying motivational drive. Furthermore, we modeled the impact of external reward cues on causal relationships within this network, thus elaborating a link between physiology, connectivity, and motivation. Specifically, our results indicated that dlPFC was the exclusive entry point of information about reward in this network, and that anticipated reward availability caused VTA activation only via its effect on the dlPFC. Anticipated reward thus increased dlPFC activation directly, whereas it influenced VTA and NAcc only indirectly, by enhancing intrinsically weak or inactive pathways from the dlPFC. Our findings of a directional prefrontal influence on dopaminergic regions during reward anticipation suggest a model in which the dlPFC integrates and transmits representations of reward to the mesolimbic and mesocortical dopamine systems, thereby initiating motivated behavior.


NeuroImage | 2011

Neurobehavioral mechanisms of human fear generalization.

Joseph E. Dunsmoor; Steven E. Prince; Vishnu P. Murty; Philip A. Kragel; Kevin S. LaBar

While much research has elucidated the neurobiology of fear learning, the neural systems supporting the generalization of learned fear are unknown. Using functional magnetic resonance imaging (fMRI), we show that regions involved in the acquisition of fear support the generalization of fear to stimuli that are similar to a learned threat, but vary in fear intensity value. Behaviorally, subjects retrospectively misidentified a learned threat as a more intense stimulus and expressed greater skin conductance responses (SCR) to generalized stimuli of high intensity. Brain activity related to intensity-based fear generalization was observed in the striatum, insula, thalamus/periacqueductal gray, and subgenual cingulate cortex. The psychophysiological expression of generalized fear correlated with amygdala activity, and connectivity between the amygdala and extrastriate visual cortex was correlated with individual differences in trait anxiety. These findings reveal the brain regions and functional networks involved in flexibly responding to stimuli that resemble a learned threat. These regions may comprise an intensity-based fear generalization circuit that underlies retrospective biases in threat value estimation and overgeneralization of fear in anxiety disorders.


Nature | 2015

Emotional learning selectively and retroactively strengthens memories for related events

Joseph E. Dunsmoor; Vishnu P. Murty; Lila Davachi; Elizabeth A. Phelps

Neurobiological models of long-term memory propose a mechanism by which initially weak memories are strengthened through subsequent activation that engages common neural pathways minutes to hours later. This synaptic tag-and-capture model has been hypothesized to explain how inconsequential information is selectively consolidated following salient experiences. Behavioural evidence for tag-and-capture is provided by rodent studies in which weak early memories are strengthened by future behavioural training. Whether a process of behavioural tagging occurs in humans to transform weak episodic memories into stable long-term memories is unknown. Here we show, in humans, that information is selectively consolidated if conceptually related information, putatively represented in a common neural substrate, is made salient through an emotional learning experience. Memory for neutral objects was selectively enhanced if other objects from the same category were paired with shock. Retroactive enhancements as a result of emotional learning were observed following a period of consolidation, but were not observed in an immediate memory test or for items strongly encoded before fear conditioning. These findings provide new evidence for a generalized retroactive memory enhancement, whereby inconsequential information can be retroactively credited as relevant, and therefore selectively remembered, if conceptually related information acquires salience in the future.


NeuroImage | 2014

Resting state networks distinguish human ventral tegmental area from substantia nigra.

Vishnu P. Murty; Maheen Shermohammed; David V. Smith; R. McKell Carter; Scott A. Huettel; R. Alison Adcock

Dopaminergic networks modulate neural processing across a spectrum of function from perception to learning to action. Multiple organizational schemes based on anatomy and function have been proposed for dopaminergic nuclei in the midbrain. One schema originating in rodent models delineated ventral tegmental area (VTA), implicated in complex behaviors like addiction, from more lateral substantia nigra (SN), preferentially implicated in movement. However, because anatomy and function in rodent midbrain differs from the primate midbrain in important ways, the utility of this distinction for human neuroscience has been questioned. We asked whether functional definition of networks within the human dopaminergic midbrain would recapitulate this traditional anatomical topology. We first developed a method for reliably defining SN and VTA in humans at conventional MRI resolution. Hand-drawn VTA and SN regions-of-interest (ROIs) were constructed for 50 participants, using individually-localized anatomical landmarks and signal intensity. Individual segmentation was used in seed-based functional connectivity analysis of resting-state functional MRI data; results of this analysis recapitulated traditional anatomical targets of the VTA versus SN. Next, we constructed a probabilistic atlas of the VTA, SN, and the dopaminergic midbrain region (comprised of SN plus VTA) from individual hand-drawn ROIs. The combined probabilistic (SN plus VTA) ROI was then used for connectivity-based dual-regression analysis in two independent resting-state datasets (n = 69 and n = 79). Results of the connectivity-based, dual-regression functional segmentation recapitulated results of the anatomical segmentation, validating the utility of this probabilistic atlas for future research.


Cerebral Cortex | 2014

Enriched Encoding: Reward Motivation Organizes Cortical Networks for Hippocampal Detection of Unexpected Events

Vishnu P. Murty; R. Alison Adcock

Learning how to obtain rewards requires learning about their contexts and likely causes. How do long-term memory mechanisms balance the need to represent potential determinants of reward outcomes with the computational burden of an over-inclusive memory? One solution would be to enhance memory for salient events that occur during reward anticipation, because all such events are potential determinants of reward. We tested whether reward motivation enhances encoding of salient events like expectancy violations. During functional magnetic resonance imaging, participants performed a reaction-time task in which goal-irrelevant expectancy violations were encountered during states of high- or low-reward motivation. Motivation amplified hippocampal activation to and declarative memory for expectancy violations. Connectivity of the ventral tegmental area (VTA) with medial prefrontal, ventrolateral prefrontal, and visual cortices preceded and predicted this increase in hippocampal sensitivity. These findings elucidate a novel mechanism whereby reward motivation can enhance hippocampus-dependent memory: anticipatory VTA-cortical-hippocampal interactions. Further, the findings integrate literatures on dopaminergic neuromodulation of prefrontal function and hippocampus-dependent memory. We conclude that during reward motivation, VTA modulation induces distributed neural changes that amplify hippocampal signals and records of expectancy violations to improve predictions-a potentially unique contribution of the hippocampus to reward learning.


Neuropsychologia | 2011

Reprint of: fMRI studies of successful emotional memory encoding: A quantitative meta-analysis

Vishnu P. Murty; Maureen Ritchey; R. Alison Adcock; Kevin S. LaBar

Over the past decade, fMRI techniques have been increasingly used to interrogate the neural correlates of successful emotional memory encoding. These investigations have typically aimed to either characterize the contributions of the amygdala and medial temporal lobe (MTL) memory system, replicating results in animals, or delineate the neural correlates of specific behavioral phenomena. It has remained difficult, however, to synthesize these findings into a systems neuroscience account of how networks across the whole-brain support the enhancing effects of emotion on memory encoding. To this end, the present study employed a meta-analytic approach using activation likelihood estimates to assess the anatomical specificity and reliability of event-related fMRI activations related to successful memory encoding for emotional versus neutral information. The meta-analysis revealed consistent clusters within bilateral amygdala, anterior hippocampus, anterior and posterior parahippocampal gyrus, the ventral visual stream, left lateral prefrontal cortex and right ventral parietal cortex. The results within the amygdala and MTL support a wealth of findings from the animal literature linking these regions to arousal-mediated memory effects. The consistency of findings in cortical targets, including the visual, prefrontal, and parietal cortices, underscores the importance of generating hypotheses regarding their participation in emotional memory formation. In particular, we propose that the amygdala interacts with these structures to promote enhancements in perceptual processing, semantic elaboration, and attention, which serve to benefit subsequent memory for emotional material. These findings may motivate future research on emotional modulation of widespread neural systems and the implications of this modulation for cognition.


The Journal of Neuroscience | 2012

Threat of Punishment Motivates Memory Encoding via Amygdala, Not Midbrain, Interactions with the Medial Temporal Lobe

Vishnu P. Murty; Kevin S. LaBar; R. Alison Adcock

Neural circuits associated with motivated declarative encoding and active threat avoidance have both been described, but the relative contribution of these systems to punishment-motivated encoding remains unknown. The current study used functional magnetic resonance imaging in humans to examine mechanisms of declarative memory enhancement when subjects were motivated to avoid punishments that were contingent on forgetting. A motivational cue on each trial informed participants whether they would be punished or not for forgetting an upcoming scene image. Items associated with the threat of shock were better recognized 24 h later. Punishment-motivated enhancements in subsequent memory were associated with anticipatory activation of right amygdala and increases in its functional connectivity with parahippocampal and orbitofrontal cortices. On a trial-by-trial basis, right amygdala activation during the motivational cue predicted hippocampal activation during encoding of the subsequent scene; across participants, the strength of this interaction predicted memory advantages due to motivation. Of note, punishment-motivated learning was not associated with activation of dopaminergic midbrain, as would be predicted by valence-independent models of motivation to learn. These data are consistent with the view that motivation by punishment activates the amygdala, which in turn prepares the medial temporal lobe for memory formation. The findings further suggest a brain system for declarative learning motivated by punishment that is distinct from that for learning motivated by reward.


Journal of Experimental Psychology: General | 2016

Episodic memories predict adaptive value-based decision-making.

Vishnu P. Murty; Oriel FeldmanHall; Lindsay E. Hunter; Elizabeth A. Phelps; Lila Davachi

Prior research illustrates that memory can guide value-based decision-making. For example, previous work has implicated both working memory and procedural memory (i.e., reinforcement learning) in guiding choice. However, other types of memories, such as episodic memory, may also influence decision-making. Here we test the role for episodic memory-specifically item versus associative memory-in supporting value-based choice. Participants completed a task where they first learned the value associated with trial unique lotteries. After a short delay, they completed a decision-making task where they could choose to reengage with previously encountered lotteries, or new never before seen lotteries. Finally, participants completed a surprise memory test for the lotteries and their associated values. Results indicate that participants chose to reengage more often with lotteries that resulted in high versus low rewards. Critically, participants not only formed detailed, associative memories for the reward values coupled with individual lotteries, but also exhibited adaptive decision-making only when they had intact associative memory. We further found that the relationship between adaptive choice and associative memory generalized to more complex, ecologically valid choice behavior, such as social decision-making. However, individuals more strongly encode experiences of social violations-such as being treated unfairly, suggesting a bias for how individuals form associative memories within social contexts. Together, these findings provide an important integration of episodic memory and decision-making literatures to better understand key mechanisms supporting adaptive behavior.


Learning & Memory | 2013

Hippocampal Networks Habituate as Novelty Accumulates.

Vishnu P. Murty; Ian C. Ballard; Katherine E. MacDuffie; Ruth M. Krebs; R. Alison Adcock

Novelty detection, a critical computation within the medial temporal lobe (MTL) memory system, necessarily depends on prior experience. The current study used functional magnetic resonance imaging (fMRI) in humans to investigate dynamic changes in MTL activation and functional connectivity as experience with novelty accumulates. fMRI data were collected during a target detection task: Participants monitored a series of trial-unique novel and familiar scene images to detect a repeating target scene. Even though novel images themselves did not repeat, we found that fMRI activations in the hippocampus and surrounding cortical MTL showed a specific, decrementing response with accumulating exposure to novelty. The significant linear decrement occurred for the novel but not the familiar images, and behavioral measures ruled out a corresponding decline in vigilance. Additionally, early in the series, the hippocampus was inversely coupled with the dorsal striatum, lateral and medial prefrontal cortex, and posterior visual processing regions; this inverse coupling also habituated as novelty accumulated. This novel demonstration of a dynamic adjustment in neural responses to novelty suggests a similarly dynamic allocation of neural resources based on recent experience.

Collaboration


Dive into the Vishnu P. Murty's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Beatriz Luna

University of Pittsburgh

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge