Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Joseph E. Dunsmoor is active.

Publication


Featured researches published by Joseph E. Dunsmoor.


Learning & Memory | 2009

Generalization of Conditioned Fear along a Dimension of Increasing Fear Intensity.

Joseph E. Dunsmoor; Stephen R. Mitroff; Kevin S. LaBar

The present study investigated the extent to which fear generalization in humans is determined by the amount of fear intensity in nonconditioned stimuli relative to a perceptually similar conditioned stimulus. Stimuli consisted of graded emotionally expressive faces of the same identity morphed between neutral and fearful endpoints. Two experimental groups underwent discriminative fear conditioning between a face stimulus of 55% fear intensity (conditioned stimulus, CS+), reinforced with an electric shock, and a second stimulus that was unreinforced (CS-). In Experiment 1 the CS- was a relatively neutral face stimulus, while in Experiment 2 the CS- was the most fear-intense stimulus. Before and following fear conditioning, skin conductance responses (SCR) were recorded to different morph values along the neutral-to-fear dimension. Both experimental groups showed gradients of generalization following fear conditioning that increased with the fear intensity of the stimulus. In Experiment 1 a peak shift in SCRs extended to the most fear-intense stimulus. In contrast, generalization to the most fear-intense stimulus was reduced in Experiment 2, suggesting that discriminative fear learning procedures can attenuate fear generalization. Together, the findings indicate that fear generalization is broadly tuned and sensitive to the amount of fear intensity in nonconditioned stimuli, but that fear generalization can come under stimulus control. These results reveal a novel form of fear generalization in humans that is not merely based on physical similarity to a conditioned exemplar, and may have implications for understanding generalization processes in anxiety disorders characterized by heightened sensitivity to nonthreatening stimuli.


NeuroImage | 2011

Neurobehavioral mechanisms of human fear generalization.

Joseph E. Dunsmoor; Steven E. Prince; Vishnu P. Murty; Philip A. Kragel; Kevin S. LaBar

While much research has elucidated the neurobiology of fear learning, the neural systems supporting the generalization of learned fear are unknown. Using functional magnetic resonance imaging (fMRI), we show that regions involved in the acquisition of fear support the generalization of fear to stimuli that are similar to a learned threat, but vary in fear intensity value. Behaviorally, subjects retrospectively misidentified a learned threat as a more intense stimulus and expressed greater skin conductance responses (SCR) to generalized stimuli of high intensity. Brain activity related to intensity-based fear generalization was observed in the striatum, insula, thalamus/periacqueductal gray, and subgenual cingulate cortex. The psychophysiological expression of generalized fear correlated with amygdala activity, and connectivity between the amygdala and extrastriate visual cortex was correlated with individual differences in trait anxiety. These findings reveal the brain regions and functional networks involved in flexibly responding to stimuli that resemble a learned threat. These regions may comprise an intensity-based fear generalization circuit that underlies retrospective biases in threat value estimation and overgeneralization of fear in anxiety disorders.


Behavioral Neuroscience | 2007

Impact of continuous versus intermittent CS-UCS pairing on human brain activation during Pavlovian fear conditioning.

Joseph E. Dunsmoor; Peter A. Bandettini; David C. Knight

During Pavlovian fear conditioning a conditioned stimulus (CS) is repeatedly paired with an aversive unconditioned stimulus (UCS). In many studies the CS and UCS are paired on every trial, whereas in others the CS and UCS are paired intermittently. To better understand the influence of the CS-UCS pairing rate on brain activity, the experimenters presented continuously, intermittently, and non-paired CSs during fear conditioning. Amygdala, anterior cingulate, and fusiform gyrus activity increased linearly with the CS-UCS pairing rate. In contrast, insula and left dorsolateral prefrontal cortex responses were larger during intermittently paired CS presentations relative to continuously and non-paired CSs. These results demonstrate two distinct patterns of activity in disparate brain regions. Amygdala, anterior cingulate, and fusiform gyrus activity paralleled the CS-UCS pairing rate, whereas the insula and dorsolateral prefrontal cortex appeared to respond to the uncertainty inherent in intermittent CS-UCS pairing procedures. These findings may further clarify the role of these brain regions in Pavlovian fear conditioning.


Nature | 2015

Emotional learning selectively and retroactively strengthens memories for related events

Joseph E. Dunsmoor; Vishnu P. Murty; Lila Davachi; Elizabeth A. Phelps

Neurobiological models of long-term memory propose a mechanism by which initially weak memories are strengthened through subsequent activation that engages common neural pathways minutes to hours later. This synaptic tag-and-capture model has been hypothesized to explain how inconsequential information is selectively consolidated following salient experiences. Behavioural evidence for tag-and-capture is provided by rodent studies in which weak early memories are strengthened by future behavioural training. Whether a process of behavioural tagging occurs in humans to transform weak episodic memories into stable long-term memories is unknown. Here we show, in humans, that information is selectively consolidated if conceptually related information, putatively represented in a common neural substrate, is made salient through an emotional learning experience. Memory for neutral objects was selectively enhanced if other objects from the same category were paired with shock. Retroactive enhancements as a result of emotional learning were observed following a period of consolidation, but were not observed in an immediate memory test or for items strongly encoded before fear conditioning. These findings provide new evidence for a generalized retroactive memory enhancement, whereby inconsequential information can be retroactively credited as relevant, and therefore selectively remembered, if conceptually related information acquires salience in the future.


Behavior Therapy | 2015

Fear Generalization in Humans: Systematic Review and Implications for Anxiety Disorder Research

Simon Dymond; Joseph E. Dunsmoor; Bram Vervliet; Bryan Roche; Dirk Hermans

Fear generalization, in which conditioned fear responses generalize or spread to related stimuli, is a defining feature of anxiety disorders. The behavioral consequences of maladaptive fear generalization are that aversive experiences with one stimulus or event may lead one to regard other cues or situations as potential threats that should be avoided, despite variations in physical form. Theoretical and empirical interest in the generalization of conditioned learning dates to the earliest research on classical conditioning in nonhumans. Recently, there has been renewed focus on fear generalization in humans due in part to its explanatory power in characterizing disorders of fear and anxiety. Here, we review existing behavioral and neuroimaging empirical research on the perceptual and non-perceptual (conceptual and symbolic) generalization of fear and avoidance in healthy humans and patients with anxiety disorders. The clinical implications of this research for understanding the etiology and treatment of anxiety is considered and directions for future research described.


NeuroImage | 2008

Neural correlates of unconditioned response diminution during Pavlovian conditioning

Joseph E. Dunsmoor; Peter A. Bandettini; David C. Knight

Pavlovian conditioning research has shown that unconditioned responses (UCR) to aversive unconditioned stimuli (UCS) are reduced when a UCS is predictable. This effect is known as UCR diminution. In the present study, we examined UCR diminution in the functional magnetic resonance imaging (fMRI) signal by varying the rate at which a neutral conditioned stimulus (CS) was paired with an aversive UCS. UCR diminution was observed within several brain regions associated with fear learning, including the amygdala, anterior cingulate, auditory cortex, and dorsolateral prefrontal cortex when a CS continuously relative to intermittently predicted the UCS. In addition, an inverse relationship between UCS expectancy and UCR magnitude was observed within the amygdala, anterior cingulate, and dorsolateral prefrontal cortex, such that as UCS expectancy increased the UCR decreased. These findings demonstrate UCR diminution within the fMRI signal, and suggest that UCS expectancies modulate UCR magnitude.


Biological Psychiatry | 2015

Fear Generalization and Anxiety: Behavioral and Neural Mechanisms

Joseph E. Dunsmoor; Rony Paz

Fear can be an adaptive emotion that helps defend against potential danger. Classical conditioning models elegantly describe how animals learn which stimuli in the environment signal danger, but understanding how this learning is generalized to other stimuli that resemble aspects of a learned threat remains a challenge. Critically, the overgeneralization of fear to harmless stimuli or situations is a burden to daily life and characteristic of posttraumatic stress disorder and other anxiety disorders. Here, we review emerging evidence on behavioral and neural mechanisms of generalization of emotional learning with the goal of encouraging further research on generalization in anxiety disorders. We begin by placing research on fear generalization in a rich historical context of stimulus generalization dating back to Pavlov, which lays the foundation for theoretical and experimental approaches used today. We then transition to contemporary behavioral and neurobiological research on generalization of emotional learning in humans and nonhuman animals and discuss the factors that promote generalization on the one hand from discrimination on the other hand.


Biological Psychology | 2012

Role of conceptual knowledge in learning and retention of conditioned fear.

Joseph E. Dunsmoor; Alex Martin; Kevin S. LaBar

Associating sensory cues with aversive outcomes is a relatively basic process shared across species. Yet higher-order cognitive processes likely contribute to associative fear learning in many circumstances, especially in humans. Here we ask whether fears can be acquired based on conceptual knowledge of object categories, and whether such concept-based fear conditioning leads to enhanced memory representations for conditioned objects. Participants were presented with a heterogeneous collection of images of animals and tools. Objects from one category were reinforced by an electrical shock, whereas the other category was never reinforced. Results confirmed concept-based fear learning through subjective report of shock expectancy, heightened skin conductance responses, and enhanced 24h recognition memory for items from the conditioned category. These results provide novel evidence that conditioned fear can generalize through knowledge of object concepts, and sheds light on the persistent nature of fear memories and category-based fear responses symptomatic of some anxiety disorders.


Cerebral Cortex | 2014

Aversive Learning Modulates Cortical Representations of Object Categories

Joseph E. Dunsmoor; Philip A. Kragel; Alex Martin; Kevin S. LaBar

Experimental studies of conditioned learning reveal activity changes in the amygdala and unimodal sensory cortex underlying fear acquisition to simple stimuli. However, real-world fears typically involve complex stimuli represented at the category level. A consequence of category-level representations of threat is that aversive experiences with particular category members may lead one to infer that related exemplars likewise pose a threat, despite variations in physical form. Here, we examined the effect of category-level representations of threat on human brain activation using 2 superordinate categories (animals and tools) as conditioned stimuli. Hemodynamic activity in the amygdala and category-selective cortex was modulated by the reinforcement contingency, leading to widespread fear of different exemplars from the reinforced category. Multivariate representational similarity analyses revealed that activity patterns in the amygdala and object-selective cortex were more similar among exemplars from the threat versus safe category. Learning to fear animate objects was additionally characterized by enhanced functional coupling between the amygdala and fusiform gyrus. Finally, hippocampal activity co-varied with object typicality and amygdala activation early during training. These findings provide novel evidence that aversive learning can modulate category-level representations of object concepts, thereby enabling individuals to express fear to a range of related stimuli.


Learning & Memory | 2011

Conceptual Similarity Promotes Generalization of Higher Order Fear Learning.

Joseph E. Dunsmoor; Allison J. White; Kevin S. LaBar

We tested the hypothesis that conceptual similarity promotes generalization of conditioned fear. Using a sensory preconditioning procedure, three groups of subjects learned an association between two cues that were conceptually similar, unrelated, or mismatched. Next, one of the cues was paired with a shock. The other cue was then reintroduced to test for fear generalization, as measured by the skin conductance response. Results showed enhanced fear generalization that correlated with trait anxiety levels in the group that learned an association between conceptually similar stimuli. These findings suggest that conceptual representations of conditional stimuli influence human fear learning processes.

Collaboration


Dive into the Joseph E. Dunsmoor's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Marijn C. W. Kroes

Radboud University Nijmegen

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Matthew S. Cain

Brigham and Women's Hospital

View shared research outputs
Top Co-Authors

Avatar

Peter A. Bandettini

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge