Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Vishwa Deep Dixit is active.

Publication


Featured researches published by Vishwa Deep Dixit.


Journal of Clinical Investigation | 2004

Ghrelin inhibits leptin- and activation-induced proinflammatory cytokine expression by human monocytes and T cells

Vishwa Deep Dixit; Eric M. Schaffer; Robert Pyle; Gary Collins; Senthil Kumar K. Sakthivel; Ravichandran Palaniappan; James W. Lillard; Dennis D. Taub

Ghrelin, a recently described endogenous ligand for the growth hormone secretagogue receptor (GHS-R), is produced by stomach cells and is a potent circulating orexigen, controlling energy expenditure, adiposity, and growth hormone secretion. However, the functional role of ghrelin in regulation of immune responses remains undefined. Here we report that GHS-R and ghrelin are expressed in human T lymphocytes and monocytes, where ghrelin acts via GHS-R to specifically inhibit the expression of proinflammatory anorectic cytokines such as IL-1beta, IL-6, and TNF-alpha. Ghrelin led to a dose-dependent inhibition of leptin-induced cytokine expression, while leptin upregulated GHS-R expression on human T lymphocytes. These data suggest the existence of a reciprocal regulatory network by which ghrelin and leptin control immune cell activation and inflammation. Moreover, ghrelin also exerts potent anti-inflammatory effects and attenuates endotoxin-induced anorexia in a murine endotoxemia model. We believe this to be the first report demonstrating that ghrelin functions as a key signal, coupling the metabolic axis to the immune system, and supporting the potential use of ghrelin and GHS-R agonists in the management of disease-associated cachexia.


Nature Medicine | 2015

The ketone metabolite β-hydroxybutyrate blocks NLRP3 inflammasome–mediated inflammatory disease

Yun-Hee Youm; Kim Y. Nguyen; Ryan W. Grant; Emily L. Goldberg; Monica Bodogai; Dongin Kim; Dominic D'Agostino; Noah J. Planavsky; Christopher Lupfer; Thirumala D. Kanneganti; Seokwon Kang; Tamas L. Horvath; Tarek M. Fahmy; Peter A. Crawford; Arya Biragyn; Emad S. Alnemri; Vishwa Deep Dixit

The ketone bodies β-hydroxybutyrate (BHB) and acetoacetate (AcAc) support mammalian survival during states of energy deficit by serving as alternative sources of ATP. BHB levels are elevated by starvation, caloric restriction, high-intensity exercise, or the low-carbohydrate ketogenic diet. Prolonged fasting reduces inflammation; however, the impact that ketones and other alternative metabolic fuels produced during energy deficits have on the innate immune response is unknown. We report that BHB, but neither AcAc nor the structurally related short-chain fatty acids butyrate and acetate, suppresses activation of the NLRP3 inflammasome in response to urate crystals, ATP and lipotoxic fatty acids. BHB did not inhibit caspase-1 activation in response to pathogens that activate the NLR family, CARD domain containing 4 (NLRC4) or absent in melanoma 2 (AIM2) inflammasome and did not affect non-canonical caspase-11, inflammasome activation. Mechanistically, BHB inhibits the NLRP3 inflammasome by preventing K+ efflux and reducing ASC oligomerization and speck formation. The inhibitory effects of BHB on NLRP3 are not dependent on chirality or starvation-regulated mechanisms like AMP-activated protein kinase (AMPK), reactive oxygen species (ROS), autophagy or glycolytic inhibition. BHB blocks the NLRP3 inflammasome without undergoing oxidation in the TCA cycle, and independently of uncoupling protein-2 (UCP2), sirtuin-2 (SIRT2), the G protein–coupled receptor GPR109A or hydrocaboxylic acid receptor 2 (HCAR2). BHB reduces NLRP3 inflammasome–mediated interleukin (IL)-1β and IL-18 production in human monocytes. In vivo, BHB or a ketogenic diet attenuates caspase-1 activation and IL-1β secretion in mouse models of NLRP3-mediated diseases such as Muckle–Wells syndrome, familial cold autoinflammatory syndrome and urate crystal–induced peritonitis. Our findings suggest that the anti-inflammatory effects of caloric restriction or ketogenic diets may be linked to BHB-mediated inhibition of the NLRP3 inflammasome.


Journal of Immunology | 2010

Obesity Increases the Production of Proinflammatory Mediators from Adipose Tissue T Cells and Compromises TCR Repertoire Diversity: Implications for Systemic Inflammation and Insulin Resistance

Hyunwon Yang; Yun-Hee Youm; Bolormaa Vandanmagsar; Anthony Ravussin; Jeffrey M. Gimble; Frank L. Greenway; Jacqueline M. Stephens; Randall L. Mynatt; Vishwa Deep Dixit

Emerging evidence suggests that increases in activated T cell populations in adipose tissue may contribute toward obesity-associated metabolic syndrome. The present study investigates three unanswered questions: 1) Do adipose-resident T cells (ARTs) from lean and obese mice have altered cytokine production in response to TCR ligation?; 2) Do the extralymphoid ARTs possess a unique TCR repertoire compared with lymphoid-resident T cells and whether obesity alters the TCR diversity in specific adipose depots?; and 3) Does short-term elimination of T cells in epididymal fat pad without disturbing the systemic T cell homeostasis regulate inflammation and insulin-action during obesity? We found that obesity reduced the frequency of naive ART cells in s.c. fat and increased the effector-memory populations in visceral fat. The ARTs from diet-induced obese (DIO) mice had a higher frequency of IFN-γ+, granzyme B+ cells, and upon TCR ligation, the ARTs from DIO mice produced increased levels of proinflammatory mediators. Importantly, compared with splenic T cells, ARTs exhibited markedly restricted TCR diversity, which was further compromised by obesity. Acute depletion of T cells from epididymal fat pads improved insulin action in young DIO mice but did not reverse obesity-associated feed forward cascade of chronic systemic inflammation and insulin resistance in middle-aged DIO mice. Collectively, these data establish that ARTs have a restricted TCR-Vβ repertoire, and T cells contribute toward the complex proinflammatory microenvironment of adipose tissue in obesity. Development of future long-term T cell depletion protocols specific to visceral fat may represent an additional strategy to manage obesity-associated comorbidities.


Nature Immunology | 2012

Immunological complications of obesity.

Thirumala-Devi Kanneganti; Vishwa Deep Dixit

Current approaches for the treatment of obesity, including diet and lifestyle changes, have not been successful in curtailing the obesity epidemic. The higher incidence of inflammation-associated chronic disease and greater susceptibility to infection in obese people represents a growing health threat. Improved understanding of the immunological processes that regulate obesity may yield new treatments for obesity-associated disorders.


Journal of Clinical Investigation | 2007

Ghrelin promotes thymopoiesis during aging

Vishwa Deep Dixit; Hyunwon Yang; Yuxiang Sun; Ashani T. Weeraratna; Yun-Hee Youm; Roy G. Smith; Dennis D. Taub

The decline in adaptive immunity, T lymphocyte output, and the contraction of the TCR repertoire with age is largely attributable to thymic involution. The loss of thymic function with age may be due to diminished numbers of progenitors and the loss of critical cytokines and hormones from the thymic microenvironment. We have previously demonstrated that the orexigenic hormone ghrelin is expressed by immune cells and regulates T cell activation and inflammation. Here we report that ghrelin and ghrelin receptor expression within the thymus diminished with progressive aging. Infusion of ghrelin into 14-month-old mice significantly improved the age-associated changes in thymic architecture and thymocyte numbers, increasing recent thymic emigrants and improving TCR diversity of peripheral T cell subsets. Ghrelin-induced thymopoiesis during aging was associated with enhanced early thymocyte progenitors and bone marrow-derived Lin(-)Sca1(+)cKit(+) cells, while ghrelin- and growth hormone secretagogue receptor-deficient (GHS-R-deficient) mice displayed enhanced age-associated thymic involution. Leptin also enhanced thymopoiesis in aged but not young mice. Our findings demonstrate what we believe to be a novel role for ghrelin and its receptor in thymic biology and suggest a possible therapeutic benefit of harnessing this pathway in the reconstitution of thymic function in immunocompromised subjects.


Cell Metabolism | 2014

Adipose tissue macrophages promote myelopoiesis and monocytosis in obesity

Prabhakara R. Nagareddy; Michael J. Kraakman; Seth L. Masters; Roslynn A. Stirzaker; Darren J. Gorman; Ryan W. Grant; Dragana Dragoljevic; Eun Shil Hong; Ahmed Abdel-Latif; Susan S. Smyth; Sung Hee Choi; Judith Korner; Karin E. Bornfeldt; Edward A. Fisher; Vishwa Deep Dixit; Alan R. Tall; Ira J. Goldberg; Andrew J. Murphy

Obesity is associated with infiltration of macrophages into adipose tissue (AT), contributing to insulin resistance and diabetes. However, relatively little is known regarding the origin of AT macrophages (ATMs). We discovered that murine models of obesity have prominent monocytosis and neutrophilia, associated with proliferation and expansion of bone marrow (BM) myeloid progenitors. AT transplantation conferred myeloid progenitor proliferation in lean recipients, while weight loss in both mice and humans (via gastric bypass) was associated with a reversal of monocytosis and neutrophilia. Adipose S100A8/A9 induced ATM TLR4/MyD88 and NLRP3 inflammasome-dependent IL-1β production. IL-1β interacted with the IL-1 receptor on BM myeloid progenitors to stimulate the production of monocytes and neutrophils. These studies uncover a positive feedback loop between ATMs and BM myeloid progenitors and suggest that inhibition of TLR4 ligands or the NLRP3-IL-1β signaling axis could reduce AT inflammation and insulin resistance in obesity.


Journal of Leukocyte Biology | 2008

Adipose‐immune interactions during obesity and caloric restriction: reciprocal mechanisms regulating immunity and health span

Vishwa Deep Dixit

Increasing evidence suggests a tight coupling of metabolic and immune systems. This cross‐talk mediated by neuroendocrine peptides as well as numerous cytokines and chemokines is believed to be responsible for integrating energy balance to immune function. These neuroendocrine‐immune interactions are heightened during the state of chronic positive energy balance, as seen during obesity, and negative energy balance caused by caloric restriction (CR). Emerging evidence suggests that obesity may be associated with an immunodeficient state and chronic inflammation, which contribute to an increased risk of premature death. The direct interactions between expanded leukocyte populations within the adipose tissue during obesity and an increased number of adipocytes within an aging lymphoid microenvironment may constitute an important adaptive or pathological response as a result of change in energy balance. In stark contrast to obesity, CR causes negative energy balance and robustly prolongs a healthy lifespan in all of the species studied to date. Therefore, the endogenous neuroendocrine‐metabolic sensors elevated or suppressed as a result of changes in energy balance may offer an important mechanism in understanding the antiaging and potential immune‐enhancing nature of CR. Ghrelin, one such sensor of negative energy balance, is reduced during obesity and increased by CR. Ghrelin also regulates immune function by reducing proinflammatory cytokines and promotes thymopoiesis during aging and thus, may be a new CR mimetic target. The identification of immune effects and molecular pathways used by such orexigenic metabolic factors could offer potentially novel approaches to enhance immunity and increase healthy lifespan.


Obesity | 2015

Adipose tissue as an immunological organ

Ryan W. Grant; Vishwa Deep Dixit

This review will focus on the immunological aspects of adipose tissue and its potential role in development of chronic inflammation that instigates obesity‐associated comorbidities.


Blood | 2009

Obesity accelerates thymic aging

Hyunwon Yang; Yun-Hee Youm; Bolormaa Vandanmagsar; Jennifer Rood; K. Ganesh Kumar; Andrew A. Butler; Vishwa Deep Dixit

As the expanding obese population grows older, their successful immunologic aging will be critical to enhancing the health span. Obesity increases risk of infections and cancer, suggesting adverse effects on immune surveillance. Here, we report that obesity compromises the mechanisms regulating T-cell generation by inducing premature thymic involution. Diet-induced obesity reduced thymocyte counts and significantly increased apoptosis of developing T-cell populations. Obesity accelerated the age-related reduction of T-cell receptor (TCR) excision circle bearing peripheral lymphocytes, an index of recently generated T cells from thymus. Consistent with reduced thymopoiesis, dietary obesity led to reduction in peripheral naive T cells with increased frequency of effector-memory cells. Defects in thymopoiesis in obese mice were related with decrease in the lymphoid-primed multipotent progenitor (Lin-Sca1+Kit+ Flt3+) as well as common lymphoid progenitor (Lin-Sca1+CD117(lo)CD127+) pools. The TCR spectratyping analysis showed that obesity compromised V-beta TCR repertoire diversity. Furthermore, the obesity induced by melanocortin 4 receptor deficiency also constricted the T-cell repertoire diversity, recapitulating the thymic defects observed with diet-induced obesity. In middle-aged humans, progressive adiposity with or without type 2 diabetes also compromised thymic output. Collectively, these findings establish that obesity constricts T-cell diversity by accelerating age-related thymic involution.


Journal of Immunology | 2009

Inhibition of Thymic Adipogenesis by Caloric Restriction Is Coupled with Reduction in Age-Related Thymic Involution

Hyunwon Yang; Yun-Hee Youm; Vishwa Deep Dixit

Aging of thymus is characterized by reduction in naive T cell output together with progressive replacement of lymphostromal thymic zones with adipocytes. Determining how calorie restriction (CR), a prolongevity metabolic intervention, regulates thymic aging may allow identification of relevant mechanisms to prevent immunosenescence. Using a mouse model of chronic CR, we found that a reduction in age-related thymic adipogenic mechanism is coupled with maintenance of thymic function. The CR increased cellular density in the thymic cortex and medulla and preserved the epithelial signatures. Interestingly, CR prevented the age-related increase in epithelial-mesenchymal transition (EMT) regulators, FoxC2, and fibroblast-specific protein-1 (FSP-1), together with reduction in lipid-laden thymic fibroblasts. Additionally, CR specifically blocked the age-related elevation of thymic proadipogenic master regulator, peroxisome proliferator activated receptor γ (PPARγ), and its upstream activator xanthine-oxidoreductase (XOR). Furthermore, we found that specific inhibition of PPARγ in thymic stromal cells prevented their adipogenic transformation in an XOR-dependent mechanism. Activation of PPARγ-driven adipogenesis in OP9-DL1 stromal cells compromised their ability to support T cell development. Conversely, CR-induced reduction in EMT and thymic adipogenesis were coupled with elevated thymic output. Compared with 26-mo-old ad libitum fed mice, the T cells derived from age-matched CR animals displayed greater proliferation and higher IL-2 expression. Furthermore, CR prevented the deterioration of the peripheral TCR repertoire diversity in older animals. Collectively, our findings demonstrate that reducing proadipogenic signaling in thymus via CR may promote thymopoiesis during aging.

Collaboration


Dive into the Vishwa Deep Dixit's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hyunwon Yang

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Anthony Ravussin

Pennington Biomedical Research Center

View shared research outputs
Top Co-Authors

Avatar

Bolormaa Vandanmagsar

Pennington Biomedical Research Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Dennis D. Taub

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yuxiang Sun

Baylor College of Medicine

View shared research outputs
Researchain Logo
Decentralizing Knowledge