Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ryan W. Grant is active.

Publication


Featured researches published by Ryan W. Grant.


Nature Medicine | 2015

The ketone metabolite β-hydroxybutyrate blocks NLRP3 inflammasome–mediated inflammatory disease

Yun-Hee Youm; Kim Y. Nguyen; Ryan W. Grant; Emily L. Goldberg; Monica Bodogai; Dongin Kim; Dominic D'Agostino; Noah J. Planavsky; Christopher Lupfer; Thirumala D. Kanneganti; Seokwon Kang; Tamas L. Horvath; Tarek M. Fahmy; Peter A. Crawford; Arya Biragyn; Emad S. Alnemri; Vishwa Deep Dixit

The ketone bodies β-hydroxybutyrate (BHB) and acetoacetate (AcAc) support mammalian survival during states of energy deficit by serving as alternative sources of ATP. BHB levels are elevated by starvation, caloric restriction, high-intensity exercise, or the low-carbohydrate ketogenic diet. Prolonged fasting reduces inflammation; however, the impact that ketones and other alternative metabolic fuels produced during energy deficits have on the innate immune response is unknown. We report that BHB, but neither AcAc nor the structurally related short-chain fatty acids butyrate and acetate, suppresses activation of the NLRP3 inflammasome in response to urate crystals, ATP and lipotoxic fatty acids. BHB did not inhibit caspase-1 activation in response to pathogens that activate the NLR family, CARD domain containing 4 (NLRC4) or absent in melanoma 2 (AIM2) inflammasome and did not affect non-canonical caspase-11, inflammasome activation. Mechanistically, BHB inhibits the NLRP3 inflammasome by preventing K+ efflux and reducing ASC oligomerization and speck formation. The inhibitory effects of BHB on NLRP3 are not dependent on chirality or starvation-regulated mechanisms like AMP-activated protein kinase (AMPK), reactive oxygen species (ROS), autophagy or glycolytic inhibition. BHB blocks the NLRP3 inflammasome without undergoing oxidation in the TCA cycle, and independently of uncoupling protein-2 (UCP2), sirtuin-2 (SIRT2), the G protein–coupled receptor GPR109A or hydrocaboxylic acid receptor 2 (HCAR2). BHB reduces NLRP3 inflammasome–mediated interleukin (IL)-1β and IL-18 production in human monocytes. In vivo, BHB or a ketogenic diet attenuates caspase-1 activation and IL-1β secretion in mouse models of NLRP3-mediated diseases such as Muckle–Wells syndrome, familial cold autoinflammatory syndrome and urate crystal–induced peritonitis. Our findings suggest that the anti-inflammatory effects of caloric restriction or ketogenic diets may be linked to BHB-mediated inhibition of the NLRP3 inflammasome.


Cell Metabolism | 2014

Adipose tissue macrophages promote myelopoiesis and monocytosis in obesity

Prabhakara R. Nagareddy; Michael J. Kraakman; Seth L. Masters; Roslynn A. Stirzaker; Darren J. Gorman; Ryan W. Grant; Dragana Dragoljevic; Eun Shil Hong; Ahmed Abdel-Latif; Susan S. Smyth; Sung Hee Choi; Judith Korner; Karin E. Bornfeldt; Edward A. Fisher; Vishwa Deep Dixit; Alan R. Tall; Ira J. Goldberg; Andrew J. Murphy

Obesity is associated with infiltration of macrophages into adipose tissue (AT), contributing to insulin resistance and diabetes. However, relatively little is known regarding the origin of AT macrophages (ATMs). We discovered that murine models of obesity have prominent monocytosis and neutrophilia, associated with proliferation and expansion of bone marrow (BM) myeloid progenitors. AT transplantation conferred myeloid progenitor proliferation in lean recipients, while weight loss in both mice and humans (via gastric bypass) was associated with a reversal of monocytosis and neutrophilia. Adipose S100A8/A9 induced ATM TLR4/MyD88 and NLRP3 inflammasome-dependent IL-1β production. IL-1β interacted with the IL-1 receptor on BM myeloid progenitors to stimulate the production of monocytes and neutrophils. These studies uncover a positive feedback loop between ATMs and BM myeloid progenitors and suggest that inhibition of TLR4 ligands or the NLRP3-IL-1β signaling axis could reduce AT inflammation and insulin resistance in obesity.


Obesity | 2015

Adipose tissue as an immunological organ

Ryan W. Grant; Vishwa Deep Dixit

This review will focus on the immunological aspects of adipose tissue and its potential role in development of chronic inflammation that instigates obesity‐associated comorbidities.


Frontiers in Immunology | 2013

Mechanisms of disease: inflammasome activation and the development of type 2 diabetes.

Ryan W. Grant; Vishwa Deep Dixit

Over the recent past, the importance of aberrant immune cell activation as one of the contributing mechanisms to the development of insulin-resistance and type 2 diabetes (T2D) has been recognized. Among the panoply of pro-inflammatory cytokines that are linked to chronic metabolic diseases, new data suggests that interleukin-1β (IL-1β) may play an important role in initiating and sustaining inflammation-induced organ dysfunction in T2D. Therefore, factors that control secretion of bioactive IL-1β have therapeutic implications. In this regard, the identification of multiprotein scaffolding complexes, “inflammasomes,” has been a great advance in our understanding of this process. The secretion of bioactive IL-1β is predominantly controlled by activation of caspase-1 through assembly of a multiprotein scaffold, “inflammasome” that is composed of NLRP3 (nucleotide-binding domain, leucine-rich-containing family, pyrin domain-containing-3) ASC (apoptosis associated speck-like protein containing a CARD) and procaspase-1. The NLRP3 inflammasome appears to be an important sensor of metabolic dysregulation and controls obesity-associated insulin resistance and pancreatic beta cell dysfunction. Initial clinical “proof of concept” studies suggest that blocking IL-1β may favorably modulate factors related to development and treatment of T2D. However, this potential therapeutic approach remains to be fully substantiated through phase-II clinical studies. Here, we outline the new immunological mechanisms that link metabolic dysfunction to the emergence of chronic inflammation and discuss the opportunities and challenges of future therapeutic approaches to dampen NLRP3 inflammasome activation or IL-1β signaling for controlling type 2 diabetes.


American Journal of Physiology-endocrinology and Metabolism | 2015

Fat in flames: influence of cytokines and pattern recognition receptors on adipocyte lipolysis

Ryan W. Grant; Jacqueline M. Stephens

Adipose tissue has the largest capacity to store energy in the body and provides energy through the release of free fatty acids during times of energy need. Different types of immune cells are recruited to adipose tissue under various physiological conditions, indicating that these cells contribute to the regulation of adipose tissue. One major pathway influenced by a number of immune cells is the release of free fatty acids through lipolysis during both physiological (e.g., cold stress) and pathophysiological processes (e.g., obesity, type 2 diabetes). Adipose tissue expansion during obesity leads to immune cell infiltration and adipose tissue remodeling, a homeostatic process that promotes inflammation in adipose tissue. The release of proinflammatory cytokines stimulates lipolysis and causes insulin resistance, leading to adipose tissue dysfunction and systemic disruptions of metabolism. This review focuses on the interactions of cytokines and other inflammatory molecules that regulate adipose tissue lipolysis during physiological and pathophysiological states.


Biochimica et Biophysica Acta | 2015

CCL20 is elevated during obesity and differentially regulated by NF-κB subunits in pancreatic β-cells

Susan J. Burke; Michael D. Karlstad; Kellie M. Regal; Tim E. Sparer; Danhong Lu; Carrie M. Elks; Ryan W. Grant; Jacqueline M. Stephens; David H. Burk; J. Jason Collier

Enhanced leukocytic infiltration into pancreatic islets contributes to inflammation-based diminutions in functional β-cell mass. Insulitis (aka islet inflammation), which can be present in both T1DM and T2DM, is one factor influencing pancreatic β-cell death and dysfunction. IL-1β, an inflammatory mediator in both T1DM and T2DM, acutely (within 1h) induced expression of the CCL20 gene in rat and human islets and clonal β-cell lines. Transcriptional induction of CCL20 required the p65 subunit of NF-κB to replace the p50 subunit at two functional κB sites within the CCL20 proximal gene promoter. The NF-κB p50 subunit prevents CCL20 gene expression during unstimulated conditions and overexpression of p50 reduces CCL20, but enhances cyclooxygenase-2 (COX-2), transcript accumulation after exposure to IL-1β. We also identified differential recruitment of specific co-activator molecules to the CCL20 gene promoter, when compared with the CCL2 and COX2 genes, revealing distinct transcriptional requirements for individual NF-κB responsive genes. Moreover, IL-1β, TNF-α and IFN-γ individually increased the expression of CCR6, the receptor for CCL20, on the surface of human neutrophils. We further found that the chemokine CCL20 is elevated in serum from both genetically obese db/db mice and in C57BL6/J mice fed a high-fat diet. Taken together, these results are consistent with a possible activation of the CCL20-CCR6 axis in diseases with inflammatory components. Thus, interfering with this signaling pathway, either at the level of NF-κB-mediated chemokine production, or downstream receptor activation, could be a potential therapeutic target to offset inflammation-associated tissue dysfunction in obesity and diabetes.


Journal of Biological Chemistry | 2014

Inactivation of C/ebp homologous protein driven immune-metabolic interactions exacerbate obesity and adipose tissue leukocytosis

Ryan W. Grant; Kim Y. Nguyen; Anthony Ravussin; Diana C. Albarado; Yun-Hee Youm; Vishwa Deep Dixit

Background: C/ebp homologous protein contributes to ER stress-induced inflammatory cytokine secretion and apoptosis. Results: Loss of Chop increases obesity, insulin resistance, and adipose tissue leukocytosis and inflammation. Conclusion: ER stress signaling through Chop is necessary for adaptation to a high fat diet. Significance: Although in obesity ER stress may impair metabolic health, inactivation of Chop promotes obesity-associated inflammation. Successful adaptation to periods of chronic caloric excess is a highly coordinated event that is critical to the survival and propagation of species. Transcription factor C/ebp homologous protein (Chop) is thought to be an important molecular mediator that integrates nutrient signals to endoplasmic reticulum (ER) stress and innate immune activation. Given that aberrant ER stress response is implicated in inducing metabolic inflammation and insulin resistance, we hypothesized that ER stress target gene Chop integrates immune and metabolic systems to adapt to chronic positive energy balance. Here we report that inactivation of Chop in mice fed a high fat diet led to significant increase in obesity caused by a reduction in energy expenditure without any change in food intake. Importantly, ablation of Chop does not induce metabolically healthy obesity, because Chop-deficient mice fed a high fat diet had increased hepatic steatosis with significantly higher insulin resistance. Quantification of adipose tissue leukocytosis revealed that elimination of Chop during obesity led to substantial increase in number of adipose tissue T and B lymphocytes. In addition, deficiency of Chop led to increase in total number of myeloid subpopulations like neutrophils and F4/80+ adipose tissue macrophages without any alterations in the frequency of M1- or M2-like adipose tissue macrophages. Further investigation of inflammatory mechanisms revealed that ablation of Chop increases the sensitivity of macrophages to inflammasome-induced activation of IL-β in macrophages. Our findings indicate that regulated expression of Chop during obesity is critical for adaptation to chronic caloric excess and maintenance of energy homeostasis via integration of metabolic and immune systems.


Journal of Biological Chemistry | 2016

Loss of oncostatin M signaling in adipocytes induces insulin resistance and adipose tissue inflammation in vivo

Carrie M. Elks; Peng Zhao; Ryan W. Grant; Hardy Hang; Jennifer L. Bailey; David H. Burk; Margaret A. McNulty; Randall L. Mynatt; Jacqueline M. Stephens

Oncostatin M (OSM) is a multifunctional gp130 cytokine. Although OSM is produced in adipose tissue, it is not produced by adipocytes. OSM expression is significantly induced in adipose tissue from obese mice and humans. The OSM-specific receptor, OSM receptor β (OSMR), is expressed in adipocytes, but its function remains largely unknown. To better understand the effects of OSM in adipose tissue, we knocked down Osmr expression in adipocytes in vitro using siRNA. In vivo, we generated a mouse line lacking Osmr in adiponectin-expressing cells (OSMRFKO mice). The effects of OSM on gene expression were also assessed in vitro and in vivo. OSM exerts proinflammatory effects on cultured adipocytes that are partially rescued by Osmr knockdown. Osm expression is significantly increased in adipose tissue T cells of high fat-fed mice. In addition, adipocyte Osmr expression is increased following high fat feeding. OSMRFKO mice exhibit increased insulin resistance and adipose tissue inflammation and have increased lean mass, femoral length, and bone volume. Also, OSMRFKO mice exhibit increased expression of Osm, the T cell markers Cd4 and Cd8, and the macrophage markers F4/80 and Cd11c. Interestingly, the same proinflammatory genes induced by OSM in adipocytes are induced in the adipose tissue of the OSMRFKO mouse, suggesting that increased expression of proinflammatory genes in adipose tissue arises both from adipocytes and other cell types. These findings suggest that adipocyte OSMR signaling is involved in the regulation of adipose tissue homeostasis and that, in obesity, OSMR ablation may exacerbate insulin resistance by promoting adipose tissue inflammation.


PLOS ONE | 2016

Loss of Nlrp3 Does Not Protect Mice from Western Diet-Induced Adipose Tissue Inflammation and Glucose Intolerance.

Rebecca E. Ringling; Michelle L. Gastecki; Makenzie L. Woodford; Kelly Lum-Naihe; Ryan W. Grant; Lakshmi Pulakat; Victoria J. Vieira-Potter; Jaume Padilla

We tested the hypothesis that loss of Nlrp3 would protect mice from Western diet-induced adipose tissue (AT) inflammation and associated glucose intolerance and cardiovascular complications. Five-week old C57BL6J wild-type (WT) and Nlrp3 knockout (Nlrp3-/-) mice were randomized to either a control diet (10% kcal from fat) or Western diet (45% kcal from fat and 1% cholesterol) for 24 weeks (n = 8/group). Contrary to our hypothesis that obesity-mediated white AT inflammation is Nlrp3-dependent, we found that Western diet-induced expression of AT inflammatory markers (i.e., Cd68, Cd11c, Emr1, Itgam, Lgals, Il18, Mcp1, Tnf, Ccr2, Ccl5 mRNAs, and Mac-2 protein) were not accompanied by increased caspase-1 cleavage, a hallmark feature of NLRP3 inflammasome activation. Furthermore, Nlrp3 null mice were not protected from Western diet-induced white or brown AT inflammation. Although Western diet promoted glucose intolerance in both WT and Nlrp3-/- mice, Nlrp3-/- mice were protected from Western diet-induced aortic stiffening. Additionally, Nlrp3-/- mice exhibited smaller cardiomyocytes and reduced cardiac fibrosis, independent of diet. Collectively, these findings suggest that presence of the Nlrp3 gene is not required for Western diet-induced AT inflammation and/or glucose intolerance; yet Nlrp3 appears to play a role in potentiating arterial stiffening, cardiac hypertrophy and fibrosis.


Obesity | 2017

2-deoxyglucose inhibits induction of chemokine expression in 3T3-L1 adipocytes and adipose tissue explants

Ryan W. Grant; Jacqueline I. Boudreaux; Jacqueline M. Stephens

To determine the influence of glycolytic inhibition on the adipocyte inflammatory response.

Collaboration


Dive into the Ryan W. Grant's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Anthony Ravussin

Pennington Biomedical Research Center

View shared research outputs
Top Co-Authors

Avatar

Carrie M. Elks

Pennington Biomedical Research Center

View shared research outputs
Top Co-Authors

Avatar

Diana C. Albarado

Pennington Biomedical Research Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

David H. Burk

Pennington Biomedical Research Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge