Vishwas Parekh
St. Jude Children's Research Hospital
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Vishwas Parekh.
Nature Medicine | 2012
Nagalingam R. Sundaresan; Prabhakaran Vasudevan; Lei Zhong; G. Kim; Sadhana Samant; Vishwas Parekh; Vinodkumar B. Pillai; P. V. Ravindra; Madhu Gupta; Valluvan Jeevanandam; John M. Cunningham; Chu-Xia Deng; David B. Lombard; Raul Mostoslavsky; Mahesh P. Gupta
Abnormal activation of insulin-like growth factor (IGF)-Akt signaling is implicated in the development of various diseases, including heart failure. However, the molecular mechanisms that regulate activation of this signaling pathway are not completely understood. Here we show that sirtuin 6 (SIRT6), a nuclear histone deacetylase, functions at the level of chromatin to directly attenuate IGF-Akt signaling. SIRT6-deficient mice developed cardiac hypertrophy and heart failure, whereas SIRT6 transgenic mice were protected from hypertrophic stimuli, indicating that SIRT6 acts as a negative regulator of cardiac hypertrophy. SIRT6-deficient mouse hearts showed hyperactivation of IGF signaling–related genes and their downstream targets. Mechanistically, SIRT6 binds to and suppresses the promoter of IGF signaling–related genes by interacting with c-Jun and deacetylating histone 3 at Lys9 (H3K9). We also found reduced SIRT6 expression in human failing hearts. These findings disclose a new link between SIRT6 and IGF-Akt signaling and implicate SIRT6 in the development of cardiac hypertrophy and failure.
Science Signaling | 2011
Nagalingam R. Sundaresan; Vinodkumar B. Pillai; Don Wolfgeher; Sadhana Samant; Prabhakaran Vasudevan; Vishwas Parekh; H. Raghuraman; John M. Cunningham; Madhu Gupta; Mahesh P. Gupta
Deacetylation of Akt and its activating kinase PDK1 promotes cell growth in physiological and pathological settings. Deacetylation for Activation Cell growth can be physiological (such as when heart cells expand in size in response to exercise, a process called cardiac hypertrophy) or pathological (such as in cancer) and is promoted by the kinase Akt. Sundaresan et al. showed that acetylation blocked the activity of Akt and its activating kinase PDK1 by interfering with the lipid-binding sites of these proteins, whereas deacetylation enhanced their activities. Mice injected with cells containing a mutant Akt that mimicked acetylated Akt formed smaller tumors, and the extent of cardiac hypertrophy was decreased in mice that lacked SIRT1, the protein that deacetylated Akt. These results provide insight into understanding the mechanisms that regulate the activity of Akt and may enable the development of new ways to promote or inhibit cell growth. Signaling through the kinase Akt regulates many biological functions. Akt is activated during growth factor stimulation through a process that requires binding of Akt to phosphatidylinositol 3,4,5-trisphosphate (PIP3), which promotes membrane localization and phosphorylation of Akt by the upstream kinase PDK1 (phosphoinositide-dependent protein kinase 1). We show that Akt and PDK1 are acetylated at lysine residues in their pleckstrin homology domains, which mediate PIP3 binding. Acetylation blocked binding of Akt and PDK1 to PIP3, thereby preventing membrane localization and phosphorylation of Akt. Deacetylation by SIRT1 enhanced binding of Akt and PDK1 to PIP3 and promoted their activation. Mice injected with cells expressing a mutant that mimicked a constitutively acetylated form of Akt developed smaller tumors than those injected with cells expressing wild-type Akt. Furthermore, impaired Akt activation in the hearts of SIRT1-deficient mice was associated with reduced cardiac hypertrophy in response to physical exercise and angiotensin II. These findings uncover a key posttranslational modification of Akt that is important for its oncogenic and hypertrophic activities.
Nature Medicine | 2003
Stephen B. Ting; Tomasz Wilanowski; Alana Auden; Mark A. Hall; Anne K. Voss; Tim Thomas; Vishwas Parekh; John M. Cunningham; Stephen M. Jane
The neural tube defects (NTDs) spina bifida and anencephaly are widely prevalent severe birth defects. The mouse mutant curly tail (ct/ct) has served as a model of NTDs for 50 years, even though the responsible genetic defect remained unrecognized. Here we show by gene targeting, mapping and genetic complementation studies that a mouse homolog of the Drosophila grainyhead (grh) gene, grainyhead-like-3 (Grhl3), is a compelling candidate for the gene underlying the curly tail phenotype. The NTDs in Grhl3-null mice are more severe than those in the curly tail strain, as the Grhl3 alleles in ct/ct mice are hypomorphic. Spina bifida in ct/ct mice is folate resistant, but its incidence can be markedly reduced by maternal inositol supplementation periconceptually. The NTDs in Grhl3−/− embryos are also folate resistant, but unlike those in ct/ct mice, they are resistant to inositol. These findings suggest that residual Grhl3 expression in ct/ct mice may be required for inositol rescue of folate-resistant NTDs.
Mechanisms of Development | 2002
Tomasz Wilanowski; Annabel Tuckfield; Loretta Cerruti; Sinead O'Connell; Robert Saint; Vishwas Parekh; Jianning Tao; John M. Cunningham; Stephen M. Jane
The Drosophila transcription factor Grainyhead regulates several key developmental processes. Three mammalian genes, CP2, LBP-1a and LBP-9 have been previously identified as homologues of grainyhead. We now report the cloning of two new mammalian genes (Mammalian grainyhead (MGR) and Brother-of-MGR (BOM)) and one new Drosophila gene (dCP2) that rewrite the phylogeny of this family. We demonstrate that MGR and BOM are more closely related to grh, whereas CP2, LBP-1a and LBP-9 are descendants of the dCP2 gene. MGR shares the greatest sequence homology with grh, is expressed in tissue-restricted patterns more comparable to grh and binds to and transactivates the promoter of the human Engrailed-1 gene, the mammalian homologue of the key grainyhead target gene, engrailed. This sequence and functional conservation indicates that the new mammalian members of this family play important developmental roles.
Developmental Biology | 2010
Yeliz Rifat; Vishwas Parekh; Tomasz Wilanowski; Nikki R. Hislop; Alana Auden; Stephen B. Ting; John M. Cunningham; Stephen M. Jane
Primary neurulation in mammals has been defined by distinct anatomical closure sites, at the hindbrain/cervical spine (closure 1), forebrain/midbrain boundary (closure 2), and rostral end of the forebrain (closure 3). Zones of neurulation have also been characterized by morphologic differences in neural fold elevation, with non-neural ectoderm-induced formation of paired dorso-lateral hinge points (DLHP) essential for neural tube closure in the cranial and lower spinal cord regions, and notochord-induced bending at the median hinge point (MHP) sufficient for closure in the upper spinal region. Here we identify a unifying molecular basis for these observations based on the function of the non-neural ectoderm-specific Grainy head-like genes in mice. Using a gene-targeting approach we show that deletion of Grhl2 results in failed closure 3, with mutants exhibiting a split-face malformation and exencephaly, associated with failure of neuro-epithelial folding at the DLHP. Loss of Grhl3 alone defines a distinct lower spinal closure defect, also with defective DLHP formation. The two genes contribute equally to closure 2, where only Grhl gene dosage is limiting. Combined deletion of Grhl2 and Grhl3 induces severe rostral and caudal neural tube defects, but DLHP-independent closure 1 proceeds normally in the upper spinal region. These findings provide a molecular basis for non-neural ectoderm mediated formation of the DLHP that is critical for complete neuraxis closure.
Developmental Biology | 2011
Yeliz Boglev; Tomasz Wilanowski; Jacinta Caddy; Vishwas Parekh; Alana Auden; Charbel Darido; Nikki R. Hislop; Michael Cangkrama; Stephen B. Ting; Stephen M. Jane
The Grainy head-like 3 (Grhl3) gene encodes a transcription factor that plays essential roles in epidermal morphogenesis during embryonic development, with deficient mice exhibiting failed skin barrier formation, defective wound repair, and loss of eyelid fusion. Despite sharing significant sequence homology, overlapping expression patterns, and an identical core consensus DNA binding site, the other members of the Grhl family (Grhl1 and -2) fail to compensate for the loss of Grhl3 in these processes. Here, we have employed diverse genetic models, coupled with biochemical studies, to define the inter-relationships of the Grhl factors in epidermal development. We show that Grhl1 and Grhl3 have evolved complete functional independence, as evidenced by a lack of genetic interactions in embryos carrying combinations of targeted alleles of these genes. In contrast, compound heterozygous Grhl2/Grhl3 embryos displayed failed wound repair, and loss of a single Grhl2 allele in Grhl3-null embryos results in fully penetrant eyes open at birth. Expression of Grhl2 from the Grhl3 locus in homozygous knock-in mice corrects the wound repair defect, but these embryos still display a complete failure of skin barrier formation. This functional dissociation is due to unexpected differences in target gene specificity, as both GRHL2 and GRHL3 bind to and regulate expression of the wound repair gene Rho GEF 19, but regulation of the barrier forming gene, Transglutaminase 1 (TGase1), is unique to GRHL3. Our findings define the mechanisms underpinning the unique and cooperative roles of the Grhl genes in epidermal development.
Molecular and Cellular Biology | 2004
Vishwas Parekh; Amy McEwen; Virginia Barbour; Yutaka Takahashi; Jerold E. Rehg; Stephen M. Jane; John M. Cunningham
ABSTRACT LBP-1a and CP2 are ubiquitously expressed members of the grainyhead transcription factor family, sharing significant sequence homology, a common DNA binding motif, and modulating a range of key regulatory and structural genes. We have reported previously that CP2-null mice are viable with no obvious abnormality. LBP-1a provides redundant function in this context. We show here that mice lacking LBP-1a expression develop intrauterine growth retardation at embryonic day 10.5, culminating in death 1 day later. No focal intraembryonic cause for this CP2-independent defect is evident. In contrast, a significant reduction in the thickness of the labyrinthine layer of the placenta is observed in LBP-1a−/− animals. However, expression of trophoblast differentiation markers is unperturbed in this context, and complementation studies utilizing tetraploid wild-type cells failed to rescue or ameliorate the LBP-1a−/− phenotype, excluding a primary trophoblast defect. An explanation for these observations is provided by the prominent angiogenic defect observed in the mutant placentas. LBP-1a−/− allantoic blood vessels fail to penetrate deeply and branch into the complex embryonic vasculature characteristic of the normal placenta. Interestingly, a similar defect in angiogenesis is observed in the yolk sac vasculature, primary endothelial cell-lined capillary tubes, although present, failed to connect into a characteristic intricate vascular network. Collectively, these results demonstrate that LBP-1a plays a critical role in the regulation of extraembryonic angiogenesis.
PLOS ONE | 2013
Xinan Yang; Prabhakaran Vasudevan; Vishwas Parekh; Aleks Penev; John M. Cunningham
Identification and characterization of crucial gene target(s) that will allow focused therapeutics development remains a challenge. We have interrogated the putative therapeutic targets associated with the transcription factor Grainy head-like 2 (GRHL2), a critical epithelial regulatory factor. We demonstrate the possibility to define the molecular functions of critical genes in terms of their personalized expression profiles, allowing appropriate functional conclusions to be derived. A novel methodology, relative expression analysis with gene-set pairs (RXA-GSP), is designed to explore the potential clinical utility of cancer-biology discovery. Observing that Grhl2-overexpression leads to increased metastatic potential in vitro, we established a model assuming Grhl2-induced or -inhibited genes confer poor or favorable prognosis respectively for cancer metastasis. Training on public gene expression profiles of 995 breast cancer patients, this method prioritized one gene-set pair (GRHL2, CDH2, FN1, CITED2, MKI67 versus CTNNB1 and CTNNA3) from all 2717 possible gene-set pairs (GSPs). The identified GSP significantly dichotomized 295 independent patients for metastasis-free survival (log-rank tested p = 0.002; severe empirical p = 0.035). It also showed evidence of clinical prognostication in another independent 388 patients collected from three studies (log-rank tested p = 3.3e–6). This GSP is independent of most traditional prognostic indicators, and is only significantly associated with the histological grade of breast cancer (p = 0.0017), a GRHL2-associated clinical character (p = 6.8e–6, Spearman correlation), suggesting that this GSP is reflective of GRHL2-mediated events. Furthermore, a literature review indicates the therapeutic potential of the identified genes. This research demonstrates a novel strategy to integrate both biological experiments and clinical gene expression profiles for extracting and elucidating the genomic impact of a novel factor, GRHL2, and its associated gene-sets on the breast cancer prognosis. Importantly, the RXA-GSP method helps to individualize breast cancer treatment. It also has the potential to contribute considerably to basic biological investigation, clinical tools, and potential therapeutic targets.
Blood Cells Molecules and Diseases | 2007
John M. Cunningham; Valerie Jansen; Aurelie Desgardin; Jin He; Vishwas Parekh; Stephen M. Jane
Science | 2003
Vishwas Parekh