Vito Cacucciolo
Sant'Anna School of Advanced Studies
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Vito Cacucciolo.
IEEE Robotics & Automation Magazine | 2016
Mariangela Manti; Vito Cacucciolo; Matteo Cianchetti
The need for building robots with soft materials emerged recently from considerations of the limitations of service robots in negotiating natural environments, from observation of the role of compliance in animals and plants [1], and even from the role attributed to the physical body in movement control and intelligence, in the so-called embodied intelligence or morphological computation paradigm [2]-[4]. The wide spread of soft robotics relies on numerous investigations of diverse materials and technologies for actuation and sensing, and on research of control techniques, all of which can serve the purpose of building robots with high deformability and compliance. But the core challenge of soft robotics research is, in fact, the variability and controllability of such deformability and compliance.
Advanced Materials | 2018
Jun Shintake; Vito Cacucciolo; Dario Floreano; Herbert Shea
Advances in soft robotics, materials science, and stretchable electronics have enabled rapid progress in soft grippers. Here, a critical overview of soft robotic grippers is presented, covering different material sets, physical principles, and device architectures. Soft gripping can be categorized into three technologies, enabling grasping by: a) actuation, b) controlled stiffness, and c) controlled adhesion. A comprehensive review of each type is presented. Compared to rigid grippers, end-effectors fabricated from flexible and soft components can often grasp or manipulate a larger variety of objects. Such grippers are an example of morphological computation, where control complexity is greatly reduced by material softness and mechanical compliance. Advanced materials and soft components, in particular silicone elastomers, shape memory materials, and active polymers and gels, are increasingly investigated for the design of lighter, simpler, and more universal grippers, using the inherent functionality of the materials. Embedding stretchable distributed sensors in or on soft grippers greatly enhances the ways in which the grippers interact with objects. Challenges for soft grippers include miniaturization, robustness, speed, integration of sensing, and control. Improved materials, processing methods, and sensing play an important role in future research.
international conference on robotics and automation | 2017
Hiroki Shigemune; Shingo Maeda; Vito Cacucciolo; Yoshitaka Iwata; Eiji Iwase; Shuji Hashimoto; Shigeki Sugano
Effective design and fabrication of 3-D electronic circuits are among the most pressing issues for future engineering. Although a variety of flexible devices have been developed, most of them are still designed two-dimensionally. In this letter, we introduce a novel idea to fabricate a 3-D wiring board. We produced the 3-D wiring board from one desktop inkjet printer by printing conductive pattern and a 2-D pattern to induce self-folding. We printed silver ink onto a paper to realize the conductive trace. Meanwhile, a 3-D structure was constructed with self-folding induced by water-based ink printed from the same printer. The paper with the silver ink self-folds along the printed line. The printed silver ink is sufficiently thin to be flexible. Even if the silver ink is already printed, the paper can self-fold or self-bend to consist the 3-D wiring board. A paper scratch driven robot was developed using this method. The robot traveled 56 mm in 15 s according to the vibration induced by the electrostatic force of the printed electrode. The size of the robot is 30 × 15 × 10 mm. This work proposes a new method to design 3-D wiring board, and shows extended possibilities for printed paper mechatronics.
intelligent robots and systems | 2016
Federico Renda; Vito Cacucciolo; Jorge Dias; Lakmal D. Seneviratne
Modeling and control of soft robots is an up-to-date and exciting area of research which has been tackled with complementary approaches so far. In this paper, we modify the existing continuum Cosserat approach optimizing it for soft robot arms which can be discretized in a finite number of sections and degrees of freedom. The resulting new piece-wise constant strain model extends the existing piece-wise constant curvature model by allowing torsion and shears strains which are fundamental to cope with out-of-the-plane external forces as appearing for example during ground locomotion. A first experimental comparison has been also conducted using one fluidic actuated leg of the soft crawler FASTT.
Smart Materials and Structures | 2016
Vito Cacucciolo; Federico Renda; Ernesto Poccia; Cecilia Laschi; Matteo Cianchetti
Soft actuators are receiving increasing attention from the engineering community, not only in research but even for industrial applications. Among soft actuators, fibre-reinforced Bending Fluidic Actuators (BFAs) became very popular thanks to features such as robustness and easy design and fabrication. However, an accurate modelling of these smart structures, taking into account all the nonlinearities involved, is a challenging task. In this effort, we propose an analytical mechanical model to capture the quasi-static response of fibre-reinforced BFAs. The model is fully 3D and for the first time includes the effect of the pressure on the lateral surface of the chamber as well as the non-constant torque produced by the pressure at the tip. The presented model can be used for design and control, while providing information about the mechanics of these complex actuators.
conference on biomimetic and biohybrid systems | 2014
Vito Cacucciolo; Francesco Corucci; Matteo Cianchetti; Cecilia Laschi
For their efficient and elegant locomotion, batoid fishes (e.g. the manta ray) have been widely studied in biology, and also taken as a source of inspiration by engineers and roboticists willing to replicate their propulsion mechanism in order to build efficient swimming machines. In this work, a new model of an under-actuated compliant wing is proposed, exhibiting both the oscillatory and undulatory behaviors underlying batoid propulsion mechanism. The proposed model allowed an investigation of the co-evolution of morphology and control, exploiting dynamics emergent from the interaction between the environment and the mechanical properties of the soft materials. Having condensed such aspects in a mathematical model, we studied the adaptability of a batoid-like morphology to different environments. As for biology, our main contribution is an exploration of the parameters linking swimming mechanics, morphology and environment. This can contribute to a deeper understanding of the factors that led various species of the batoid group to phylogenetically adapt to different environments. From a robotics standpoint, this work offers an additional example remarking the importance of morphological computation and embodied intelligence. A direct application can be an under-water soft robot capable of adapting morphology and control to reach the maximum swimming efficiency.
Bioinspiration & Biomimetics | 2017
Lorenzo Vannucci; Egidio Falotico; Silvia Tolu; Vito Cacucciolo; Paolo Dario; Henrik Hautop Lund; Cecilia Laschi
Gaze stabilization is essential for clear vision; it is the combined effect of two reflexes relying on vestibular inputs: the vestibulocollic reflex (VCR), which stabilizes the head in space and the vestibulo-ocular reflex (VOR), which stabilizes the visual axis to minimize retinal image motion. The VOR works in conjunction with the opto-kinetic reflex (OKR), which is a visual feedback mechanism that allows the eye to move at the same speed as the observed scene. Together they keep the image stationary on the retina. In this work, we implement on a humanoid robot a model of gaze stabilization based on the coordination of VCR, VOR and OKR. The model, inspired by neuroscientific cerebellar theories, is provided with learning and adaptation capabilities based on internal models. We present the results for the gaze stabilization model on three sets of experiments conducted on the SABIAN robot and on the iCub simulator, validating the robustness of the proposed control method. The first set of experiments focused on the controller response to a set of disturbance frequencies along the vertical plane. The second shows the performances of the system under three-dimensional disturbances. The last set of experiments was carried out to test the capability of the proposed model to stabilize the gaze in locomotion tasks. The results confirm that the proposed model is beneficial in all cases reducing the retinal slip (velocity of the image on the retina) and keeping the orientation of the head stable.
conference on biomimetic and biohybrid systems | 2015
Yasmin Ansari; Ali Leylavi Shoushtari; Vito Cacucciolo; Matteo Cianchetti; Cecilia Laschi
We present a novel soft limb quadruped robot FASTT, with a simple and cheap design of its legs for dynamic locomotion aimed to expand the applications of soft robotics in mobile robots. The pneumatically actuated soft legs are self-stabilizing, adaptive to ground, and have variable stiffness, all of which are essential properties of locomotion that are also found in biological systems. We tested the soft legs for the pace, trot, and gallop gait and found them to move with a forward velocity for each gait with robustness. The legs were able to produce a flight and stance phase as a result of the body-environment interaction and also support the weight of the body while two legs were in flight phase and two in stance phase. The soft robot also exhibited two different postures i.e. sprawl and semi-erect which can also be found in some biological species as the crocodile. Moreover, the robot is safe to interact with. The results highlight the effectiveness of the soft limbs to produce dynamic locomotion which provides potential for application in uncertain environments.
Soft robotics | 2018
Jun Shintake; Vito Cacucciolo; Herbert Shea; Dario Floreano
Abstract This article presents the design, fabrication, and characterization of a soft biomimetic robotic fish based on dielectric elastomer actuators (DEAs) that swims by body and/or caudal fin (BCF) propulsion. BCF is a promising locomotion mechanism that potentially offers swimming at higher speeds and acceleration rates, and efficient locomotion. The robot consists of laminated silicone layers wherein two DEAs are used in an antagonistic configuration, generating undulating fish-like motion. The design of the robot is guided by a mathematical model based on the Euler–Bernoulli beam theory and takes account of the nonuniform geometry of the robot and of the hydrodynamic effect of water. The modeling results were compared with the experimental results obtained from the fish robot with a total length of 150u2009mm, a thickness of 0.75u2009mm, and weight of 4.4u2009g. We observed that the frequency peaks in the measured thrust force produced by the robot are similar to the natural frequencies computed by the model. The peak swimming speed of the robot was 37.2u2009mm/s (0.25 body length/s) at 0.75u2009Hz. We also observed that the modal shape of the robot at this frequency corresponds to the first natural mode. The swimming of the robot resembles real fish and displays a Strouhal number very close to those of living fish. These results suggest the high potential of DEA-based underwater robots relying on BCF propulsion, and applicability of our design and fabrication methods.
intelligent robots and systems | 2017
Yu Kuwajima; Hiroki Shigemune; Vito Cacucciolo; Matteo Cianchetti; Cecilia Laschi; Shingo Maeda
Designing and manufacturing actuators using soft materials are among the most important subjects for future robotics. In nature, animals made by soft tissues such as the octopus have attracted the attention of the robotics community in the last years. Suckers (or suction cups) are one of the most important and peculiar organs of the octopus body, giving it the ability to apply high forces on the external environment. The integration of suction cups in soft robots can enhance their ability to manipulate objects and interact with the environment similarly to what the octopus does. However, artificial suction cups are currently actuated using fluid pressure so most of them require external compressors, which will greatly increase the size of the soft robot. In this work, we proposed the use of the ElectroHydroDynamics (EHD) principle to actuate a suction cup. EHD is a fluidic phenomenon coupled with electrochemical reaction that can induce pressure through the application of a high-intensity electric field. We succeeded in developing a suction cup driven by EHD keeping the whole structure extremely simple, fabricated by using a 3D printer and a cutting plotter. We can control the adhesion of the suction cup by controlling the direction of the fluidic flow in our EHD pump. Thanks to a symmetrical arrangement of the electrodes, composed by plates parallel to the direction of the channel, we can change the direction of the flow by changing the sign of the applied voltage. We obtained the pressure of 643 Pa in one unit of EHD pump and pressure of 1428 Pa in five units of EHD pump applying 6 kV. The suction cup actuator was able to hold and release a 2.86 g piece of paper. We propose the soft actuator driven by the EHD pump, and expand the possibility to miniaturize the size of soft robots.