Vítor J.P. Vilar
University of Porto
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Vítor J.P. Vilar.
Environmental Technology | 2011
Amit Bhatnagar; Vítor J.P. Vilar; Cidália M.S. Botelho; Rui A.R. Boaventura
Red mud (an aluminium industry waste) has received wide attention as an effective adsorbent for water pollution control, showing significant adsorption potential for the removal of various aquatic pollutants. In this review, an extensive list of red‐mud‐based adsorbents has been compiled and their adsorption capacities (maximum uptake value of the adsorbent for the pollutant or adsorbate being removed) for various aquatic pollutants (metal ions, dyes, phenolic compounds, inorganic anions) are presented. The review provides a summary of recent information obtained using batch studies and deals with the adsorption mechanisms involved. It is evident from the literature survey that red mud has been found to be efficient for the removal of various aquatic pollutants, especially arsenic and phosphate. However, there is still a need to investigate the practical utility of these adsorbents on a commercial scale.
Advances in Colloid and Interface Science | 2010
Amit Bhatnagar; Vítor J.P. Vilar; Cidália M.S. Botelho; Rui A.R. Boaventura
Biosorption is an emerging technique for water treatment utilizing abundantly available biomaterials (especially agricultural wastes). Among several agricultural wastes studied as biosorbents for water treatment, coconut has been of great importance as various parts of this tree (e.g. coir, shell, etc.) have been extensively studied as biosorbents for the removal of diverse type of pollutants from water. Coconut-based agricultural wastes have gained wide attention as effective biosorbents due to low-cost and significant adsorption potential for the removal of various aquatic pollutants. In this review, an extensive list of coconut-based biosorbents from vast literature has been compiled and their adsorption capacities for various aquatic pollutants as available in the literature are presented. Available abundantly, high biosorption capacity, cost-effectiveness and renewability are the important factors making these materials as economical alternatives for water treatment and waste remediation. This paper presents a state of the art review of coconut-based biosorbents used for water pollution control, highlighting and discussing key advancement on the preparation of novel adsorbents utilizing coconut wastes, its major challenges together with the future prospective. It is evident from the literature survey that coconut-based biosorbents have shown good potential for the removal of various aquatic pollutants. However, still there is a need to find out the practical utility of such developed adsorbents on commercial scale, leading to the superior improvement of pollution control and environmental preservation.
Water Research | 2011
Vítor J.P. Vilar; Elisangela M.R. Rocha; Francisco Suetônio Bastos Mota; Amélia Fonseca; Isabel Saraiva; Rui A.R. Boaventura
A solar photo-Fenton process combined with a biological nitrification and denitrification system is proposed for the decontamination of a landfill leachate in a pilot plant using photocatalytic (4.16 m(2) of Compound Parabolic Collectors - CPCs) and biological systems (immobilized biomass reactor). The optimum iron concentration for the photo-Fenton reaction of the leachate is 60 mg Fe(2+) L(-1). The organic carbon degradation follows a first-order reaction kinetics (k = 0.020 L kJ(UV)(-1), r(0) = 12.5 mg kJ(UV)(-1)) with a H(2)O(2) consumption rate of 3.0 mmol H(2)O(2) kJ(UV)(-1). Complete removal of ammonium, nitrates and nitrites of the photo-pre-treated leachate was achieved by biological denitrification and nitrification, after previous neutralization/sedimentation of iron sludge (40 mL of iron sludge per liter of photo-treated leachate after 3 h of sedimentation). The optimum C/N ratio obtained for the denitrification reaction was 2.8 mg CH(3)OH per mg N-NO(3)(-), consuming 7.9 g/8.2 mL of commercial methanol per liter of leachate. The maximum nitrification rate obtained was 68 mg N-NH(4)(+) per day, consuming 33 mmol (1.3 g) of NaOH per liter during nitrification and 27.5 mmol of H(2)SO(4) per liter during denitrification. The optimal phototreatment energy estimated to reach a biodegradable effluent, considering Zahn-Wellens, respirometry and biological oxidation tests, at pilot plant scale, is 29.2 kJ(UV) L(-1) (3.3 h of photo-Fenton at a constant solar UV power of 30 W m(-2)), consuming 90 mM of H(2)O(2) when used in excess, which means almost 57% mineralization of the leachate, 57% reduction of polyphenols concentration and 86% reduction of aromatic content.
Water Research | 2012
Ariana M.A. Pintor; Catarina I.A. Ferreira; Joana P.C. Pereira; Patrícia Correia; Susana P. Silva; Vítor J.P. Vilar; Cidália M.S. Botelho; Rui A.R. Boaventura
Cork powder and granules are the major subproducts of the cork industry, one of the leading economic activities in Portugal and other Mediterranean countries. Many applications have been envisaged for this product, from cork stoppers passing through the incorporation in agglomerates and briquettes to the use as an adsorbent in the treatment of gaseous emissions, waters and wastewaters. This paper aims at reviewing the state of the art on the properties of cork and cork powder and their application in adsorption technologies. Cork biomass has been used on its original form as biosorbent for heavy metals and oils, and is also a precursor of activated carbons for the removal of emerging organic pollutants in water and VOCs in the gas phase. Through this literature review, different potential lines of research not yet explored can be more easily identified.
Water Research | 2012
Vítor J.P. Vilar; Francisca C. Moreira; Ana C.C. Ferreira; C. Gonçalves; M.F. Alpendurada; Rui A.R. Boaventura
This work proposes an efficient combined treatment for the decontamination of a pesticide-containing wastewater resulting from phytopharmaceutical plastic containers washing, presenting a moderate organic load (COD=1662-1960 mg O₂ L⁻¹; DOC=513-696 mg C L⁻¹), with a high biodegradable organic carbon fraction (81%; BOD₅=1350-1600 mg O₂ L⁻¹) and a remaining recalcitrant organic carbon mainly due to pesticides. Nineteen pesticides were quantified by LC-MS/MS at concentrations between 0.02 and 45 mg L⁻¹ (14-19% of DOC). The decontamination strategy involved a sequential three-step treatment: (a) biological oxidation process, leading to almost complete removal of the biodegradable organic carbon fraction; (b) solar photo-Fenton process using CPCs, enhancing the bio-treated wastewater biodegradability, mainly due to pesticides degradation into low-molecular-weight carboxylate anions; (c) and a final polishing step to remove the residual biodegradable organic carbon, using a biological oxidation process. Treatment performance was evaluated in terms of mineralization degree (DOC), pesticides content (LC-MS/MS), inorganic ions and low-molecular-weight carboxylate anions (IC) concentrations. The estimated phototreatment energy necessary to reach a biodegradable wastewater, considering pesticides and low-molecular-weight carboxylate anions concentrations, Zahn-Wellens test and BOD₅/COD ratio, was only 2.3 kJ(UV) L⁻¹ (45 min of photo-Fenton at a constant solar UV power of 30 W m⁻²), consuming 16 mM of H₂O₂, which pointed to 52% mineralization and an abatement higher than 86% for 18 pesticides. The biological oxidation/solar photo-Fenton/biological oxidation treatment system achieved pesticide removals below the respective detection limits and 79% mineralization, leading to a COD value lower than 150 mg O₂ L⁻¹, which is in agreement with Portuguese discharge limits regarding water bodies.
Science of The Total Environment | 2013
João H.O.S. Pereira; Ana C. Reis; Daniel Queirós; Olga C. Nunes; Maria T. Borges; Vítor J.P. Vilar; Rui A.R. Boaventura
In this study, solar driven TiO2-assisted heterogeneous photocatalytic experiments in a pilot-plant with compound parabolic collectors (CPCs) were carried out to study the degradation of two authorized veterinary antibiotics with particular relevance in finfish aquaculture, oxolinic acid (OXA) and oxytetracycline (OTC), using pure solutions of individual or mixed antibiotics. Firstly, the influence of natural solar photolysis was assessed for each antibiotic. Secondly, photocatalytic degradation kinetic rate constants for individual and mixed antibiotics were compared, using a catalyst load of 0.5 g L(-1) and an initial pH around 7.5. Thirdly, for individually photocatalytic-treated OXA and OTC in the same conditions, the growth inhibition of Escherichia coli DSM 1103 was followed, and the mineralization extent was assessed by the residual dissolved organic carbon (DOC), low-molecular-weight carboxylate anions and inorganic ions concentration. Finally, the effect of inorganic ions, such as chlorides, sulfates, nitrates, phosphates, ammonium and bicarbonates, on the photocatalytic degradation of individual solutions of OXA and OTC was also evaluated and the formation of different reactive oxygen species were probed using selective scavengers. The removal profiles of each antibiotic, both as single component or in mixture were similar, being necessary 2.5 kJ L(-1) of solar UV energy to fully remove them, and 18 kJ(UV) L(-1) to achieve 73% and 81% mineralization, for OXA and OTC, respectively. The remaining organic carbon content was mainly due to low-molecular-weight carboxylate anions. After complete removal of the antibiotics, the remaining degradation by-products no longer showed antibacterial activity. Also, 10% and 55% of the nitrogen content of each antibiotic was converted to ammonium, while no conversion to nitrite or nitrate was detected. The presence of phosphates hindered considerably the removal of both antibiotics, whereas the presence of other inorganic ions did not substantially altered the antibiotics photocatalytic degradation kinetics.
Journal of Hazardous Materials | 2009
Vítor J.P. Vilar; Cidália M.S. Botelho; José Paulo Pinheiro; Rute F. Domingos; Rui A.R. Boaventura
The general principles of Cu(II) binding to algal waste from agar extraction, composite material and algae Gelidium, and different modelling approaches, are discussed. FTIR analyses provided a detailed description of the possible binding groups present in the biosorbents, as carboxylic groups (D-glucuronic and pyruvic acids), hydroxyl groups (cellulose, agar and floridean starch) and sulfonate groups (sulphated galactans). Potentiometric acid-base titrations showed a heterogeneous distribution of two major binding groups, carboxyl and hydroxyl, following the quasi-Gaussian affinity constant distribution suggested by Sips, which permitted to estimate the maximum amount of acid functional groups (0.36, 0.25 and 0.1 mmol g(-1)) and proton binding parameters (pK(H)=5.0, 5.3 and 4.4; m(H)=0.43, 0.37, 0.33), respectively for algae Gelidium, algal waste and composite material. A non-ideal, semi-empirical, thermodynamically consistent (NICCA) isotherm fitted better the experimental ion binding data for different pH values and copper concentrations, considering only the acid functional groups, than the discrete model. Values of pK(M) (3.2; 3.6 and 3.3), n(M) (0.98, 0.91, 1.0) and p (0.67, 0.53 and 0.43) were obtained, respectively for algae Gelidium, algal waste and composite material. NICCA model reflects the complex macromolecular systems that take part in biosorption considering the heterogeneity of the biosorbent, the competition between protons and metals ions to the binding sites and the stoichiometry for different ions.
Water Research | 2010
Joana F. de Sá S. Costa; Vítor J.P. Vilar; Cidália M.S. Botelho; Eduardo A. Borges da Silva; Rui A.R. Boaventura
Ca-loaded Pelvetia canaliculata biomass was used to remove Pb(2+) in aqueous solution from batch and continuous systems. The physicochemical characterization of algae Pelvetia particles by potentiometric titration and FTIR analysis has shown a gel structure with two major binding groups - carboxylic (2.8 mmol g(-1)) and hydroxyl (0.8 mmol g(-1)), with an affinity constant distribution for hydrogen ions well described by a Quasi-Gaussian distribution. Equilibrium adsorption (pH 3 and 5) and desorption (eluents: HNO(3) and CaCl(2)) experiments were performed, showing that the biosorption mechanism was attributed to ion exchange among calcium, lead and hydrogen ions with stoichiometry 1:1 (Ca:Pb) and 1:2 (Ca:H and Pb:H). The uptake capacity of lead ions decreased with pH, suggesting that there is a competition between H(+) and Pb(2+) for the same binding sites. A mass action law for the ternary mixture was able to predict the equilibrium data, with the selectivity constants alpha(Ca)(H)=9+/-1 and alpha(Ca)(Pb)=44+/-5, revealing a higher affinity of the biomass towards lead ions. Adsorption (initial solution pH 4.5 and 2.5) and desorption (0.3M HNO(3)) kinetics were performed in batch and continuous systems. A mass transfer model using the Nernst-Planck approximation for the ionic flux of each counter-ion was used for the prediction of the ions profiles in batch systems and packed bed columns. The intraparticle effective diffusion constants were determined as 3.73x10(-7)cm(2)s(-1) for H(+), 7.56x10(-8)cm(2)s(-1) for Pb(2+) and 6.37x10(-8)cm(2)s(-1) for Ca(2+).
Water Research | 2013
Tânia F.C.V. Silva; M. Elisabete F. Silva; A. Cristina Cunha-Queda; Amélia Fonseca; Isabel Saraiva; Carlos-Alberto Gonçalves; M.F. Alpendurada; Rui A.R. Boaventura; Vítor J.P. Vilar
A multistage treatment system, at a scale close to the industrial, was designed for the treatment of a mature raw landfill leachate, including: a) an activated sludge biological oxidation (ASBO), under aerobic and anoxic conditions; b) a solar photo-Fenton process, enhancing the bio-treated leachate biodegradability, with and without sludge removal after acidification; and c) a final polishing step, with further ASBO. The raw leachate was characterized by a high concentration of humic substances (HS) (1211 mg CHS/L), representing 39% of the dissolved organic carbon (DOC) content, and a high nitrogen content, mainly in the form of ammonium nitrogen (>3.8 g NH4(+)-N/L). In the first biological oxidation step, a 95% removal of total nitrogen and a 39% mineralization in terms of DOC were achieved, remaining only the recalcitrant fraction, mainly attributed to HS (57% of DOC). Under aerobic conditions, the highest nitrification rate obtained was 8.2 mg NH4(+)-N/h/g of volatile suspended solids (VSS), and under anoxic conditions, the maximum denitrification rate obtained was 5.8 mg (NO2(-)-N + NO3(-)-N)/h/g VSS, with a C/N consumption ratio of 2.4 mg CH3OH/mg (NO2(-)-N + NO3(-)-N). The precipitation of humic acids (37% of HS) after acidification of the bio-treated leachate corresponds to a 96% DOC abatement. The amount of UV energy and H2O2 consumption during the photo-Fenton reaction was 30% higher in the experiment without sludge removal and, consequently, the reaction velocity was 30% lower. The phototreatment process led to the depletion of HS >80%, of low-molecular-weight carboxylate anions >70% and other organic micropollutants, thus resulting in a total biodegradability increase of >70%. The second biological oxidation allowed to obtain a final treated leachate in compliance with legal discharge limits regarding water bodies (with the exception of sulfate ions), considering the experiment without sludge. Finally, the high efficiency of the overall treatment process was further reinforced by the total removal percentages attained for the identified organic trace contaminants (>90%).
Water Research | 2009
Vítor J.P. Vilar; Manuel I. Maldonado; I. Oller; Sixto Malato; Rui A.R. Boaventura
This paper reports on cork boiling and bleaching wastewaters treatment by solar photocatalytic processes, TiO(2)/UV and Fe(2+)/H(2)O(2)/UV (TiO(2)-only for bleaching wastewater), in a pilot plant with compound parabolic collectors. The photo-Fenton reaction (k=0.12L/kJ(UV), r(0)=59.4 mg/kJ(UV)) is much more efficient that TiO(2) photocatalysis and TiO(2)+S(2)O(8)(2-) (k=0.0024 L/kJ(UV), r(0)=1.36 mg/kJ(UV)), leading to 94% mineralization of the bleaching wastewater after 31.5 kJ(UV)/L, consuming 77.1mM of H(2)O(2) (3.0 mmol/kJ(UV)) and using 20 mg/L of iron. For the cork boiling wastewater, after a slow initial reaction rate, the DOC degradation curve shows a first-order kinetics behaviour (k=0.015 L/kJ(UV), r(0)=20.8 mg/kJ(UV)) until 173 kJ(UV)/L ( approximately 300 mgC/L). According to the average oxidation state (AOS), toxicity profiles, respirometry and kinetic results obtained in two solar CPCs plants, the optimal energy dose estimated for phototreatment to reach a biodegradable effluent is 15 kJ(UV)/L and 114 kJ(UV)/L, consuming 33 mM and 151 mM of H(2)OT:/PGN/ELSEVIER/WR/web/00007490/(2), achieving almost 49% and 48% mineralization of the wastewaters, respectively for the cork bleaching and boiling wastewaters.