Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Vivek Kaushik is active.

Publication


Featured researches published by Vivek Kaushik.


Journal of Cellular Biochemistry | 2015

Nitric Oxide Mediates Bleomycin‐induced Angiogenesis and Pulmonary Fibrosis via Regulation of VEGF

Anand Krishnan V. Iyer; Vani Ramesh; Carlos A. Castro; Vivek Kaushik; Yogesh Kulkarni; Clayton Wright; Rajkumar Venkatadri; Yon Rojanasakul; Neelam Azad

Pulmonary fibrosis is a progressive lung disease hallmarked by increased fibroblast proliferation, amplified levels of extracellular matrix deposition and increased angiogenesis. Although dysregulation of angiogenic mediators has been implicated in pulmonary fibrosis, the specific rate‐limiting angiogenic markers involved and their role in the progression of pulmonary fibrosis remains unclear. We demonstrate that bleomycin treatment induces angiogenesis, and inhibition of the central angiogenic mediator VEGF using anti‐VEGF antibody CBO‐P11 significantly attenuates bleomycin‐induced pulmonary fibrosis in vivo. Bleomycin‐induced nitric oxide (NO) was observed to be the key upstream regulator of VEGF via the PI3k/Akt pathway. VEGF regulated other important angiogenic proteins including PAI‐1 and IL‐8 in response to bleomycin exposure. Inhibition of NO and VEGF activity significantly mitigated bleomycin‐induced angiogenic and fibrogenic responses. NO and VEGF are key mediators of bleomycin‐induced pulmonary fibrosis, and could serve as important targets against this debilitating disease. Overall, our data suggests an important role for angiogenic mediators in the pathogenesis of bleomycin‐induced pulmonary fibrosis. J. Cell. Biochem. 116: 2484–2493, 2015.


Proteomics | 2016

A proteomics approach to identifying key protein targets involved in VEGF inhibitor mediated attenuation of bleomycin-induced pulmonary fibrosis.

Yogesh Kulkarni; Sucharita Dutta; Anand Krishnan V. Iyer; Rajkumar Venkatadri; Vivek Kaushik; Vani Ramesh; Clayton Wright; Oliver J. Semmes; Juan Sebastian Yakisich; Neelam Azad

Idiopathic pulmonary fibrosis (IPF) is a progressive lung disease with a life expectancy of less than 5 years post diagnosis for most patients. Poor molecular characterization of IPF has led to insufficient understanding of the pathogenesis of the disease, resulting in lack of effective therapies. In this study, we have integrated a label‐free LC‐MS based approach with systems biology to identify signaling pathways and regulatory nodes within protein interaction networks that govern phenotypic changes that may lead to IPF. Ingenuity Pathway Analysis of proteins modulated in response to bleomycin treatment identified PI3K/Akt and Wnt signaling as the most significant profibrotic pathways. Similar analysis of proteins modulated in response to vascular endothelial growth factor (VEGF) inhibitor (CBO‐P11) treatment identified natural killer cell signaling and PTEN signaling as the most significant antifibrotic pathways. Mechanistic/mammalian target of rapamycin (mTOR) and extracellular signal‐regulated kinase (ERK) were identified to be key mediators of pro‐ and antifibrotic response, where bleomycin (BLM) treatment resulted in increased expression and VEGF inhibitor treatment attenuated expression of mTOR and ERK. Using a BLM mouse model of pulmonary fibrosis and VEGF inhibitor CBO‐P11 as a therapeutic measure, we identified a comprehensive set of signaling pathways and proteins that contribute to the pathogenesis of pulmonary fibrosis that can be targeted for therapy against this fatal disease.


Journal of Cellular Physiology | 2016

Autophagy-Induced Apoptosis in Lung Cancer Cells by a Novel Digitoxin Analog

Yogesh Kulkarni; Vivek Kaushik; Neelam Azad; Clayton Wright; Yon Rojanasakul; George A. O'Doherty; Anand Krishnan V. Iyer

We have synthesized a novel derivative of Digitoxin, termed “MonoD”, which demonstrates cytotoxic effects in lung cancer cells with much higher potency as compared to Digitoxin. Our data show that within 1 h of MonoD treatment, H460 cells showed increased oxidative stress, increased formation of autophagic vacuoles, and increased expression of pro‐autophagic markers Beclin‐1 and LC3‐II. Cells pretreated with MnTBAP, a superoxide scavenger not only lowered superoxide production, but also had lower levels of LC3‐II and Beclin‐1. Prolonged treatment with MonoD‐induced apoptosis in lung cancer cells. We investigated MonoD‐dependent regulation of Akt and Bcl2, proteins that are known regulators of both autophagy and apoptosis. Molecular and pharmacologic inhibitors of Bcl2 and Akt, when combined with MonoD, led to higher expression of LC3‐II and Beclin‐1 as compared to MonoD alone, suggesting a repressive effect for these proteins in MonoD‐dependent autophagy. Pretreatment of cells with an autophagy inhibitor repressed the apoptotic potential of MonoD, confirming that early autophagic flux is important to drive apoptosis. Therapeutic entities such as MonoD that target multiple pathways such as autophagy and apoptosis may prove advantageous over current therapies that have unimodal basis for action and may drive sustained tumor regression, which is highly desirable. J. Cell. Physiol. 231: 817–828, 2016.


Journal of Cellular Physiology | 2017

Anti-Tumor Effects of Cardiac Glycosides on Human Lung Cancer Cells and Lung Tumorspheres: ANTI-TUMOR EFFECTS OF CARDIAC GLYCOSIDES

Vivek Kaushik; Juan Sebastian Yakisich; Neelam Azad; Yogesh Kulkarni; Rajkumar Venkatadri; Clayton Wright; Yon Rojanasakul; Anand Krishnan V. Iyer

Lung cancer is a leading cause of cancer‐related death in the United States. Although several drugs have been developed that target individual biomarkers, their success has been limited due to intrinsic or acquired resistance for the specific targets of such drugs. A more effective approach is to target multiple pathways that dictate cancer progression. Cardiac glycosides demonstrate such multimodal effects on cancer cell survival, and our aim was to evaluate the effect of two naturally occurring monosaccaridic cardiac glycosides—Convallatoxin and Peruvoside on lung cancer cells. Although both drugs had significant anti‐proliferative effects on H460 and Calu‐3 lung cancer cells, Convallatoxin demonstrated twofold higher activity as compared to Peruvoside using both viability and colony forming assays, suggesting a role for the aglycone region in dictating drug potency. The tumor suppressor p53 was found to be important for action of both drugs—p53‐underexpressing cells were less sensitive as compared to p53‐positive H460 cells. Further, assessment of p53‐underexpressing H460 cells showed that drugs were able to arrest cells in the G0/G1 phase of the cell cycle in a dose‐dependent manner. Both drugs significantly inhibited migration and invasion of cancer cells and decreased the viability of floating tumorspheres. An assessment of intracellular pathways indicated that both drugs were able to modulate proteins that are involved in apoptosis, autophagy, cell cycle, proliferation, and EMT. Our data suggest, a promising role for cardiac glycosides in lung cancer treatment, and provides impetus for further investigation of the anti‐cancer potential of this class of drugs. J. Cell. Physiol. 232: 2497–2507, 2017.


Stem Cells International | 2016

Formation of Tumorspheres with Increased Stemness without External Mitogens in a Lung Cancer Model

Juan Sebastian Yakisich; Neelam Azad; Rajkumar Venkatadri; Yogesh Kulkarni; Clayton Wright; Vivek Kaushik; Anand Krishnan V. Iyer

Like with most solid tumors, the presence of a subpopulation of cancer stem cells (CSCs) or cancer stem-like cells (CS-LCs) has been associated with chemoresistance and tumor relapse in lung cancer cells. In the absence of serum, CSCs/CS-LCs have the ability to grow as lung tumorspheres (LTSs), and this system is routinely used for isolation and characterization of putative CSCs/CS-LCs. Methods to isolate LTSs are usually performed in serum-free media supplemented with specific additives such as epidermal growth factor and basic fibroblast growth factor. In this study, we report the generation of LTSs without the addition of any external mitogenic stimulation. LTSs generated in this manner demonstrated several traits usually associated with increased stemness such as elevated expression of the stemness-associated marker Sox2 and increased chemoresistance to conventional anticancer drugs. In addition, we report that the FDA-approved drug Digitoxin, at concentration close to its therapeutic level, decreased the viability of LTSs and downregulated Sox2 independent of the PI3K/AKT pathway. The potential use of LTSs generated without the addition of any external mitogenic stimulation to study the role of specific factor(s) associated with stemness properties is also discussed.


Oncology Reports | 2016

Digitoxin and its synthetic analog MonoD have potent antiproliferative effects on lung cancer cells and potentiate the effects of hydroxyurea and paclitaxel

Juan Sebastian Yakisich; Neelam Azad; Rajkumar Venkatadri; Yogesh Kulkarni; Clayton Wright; Vivek Kaushik; George A. O'Doherty; Anand Krishnan V. Iyer

Despite significant advances in the understanding of lung cancer biology, the prognosis of cancer patients remains poor. Part of the failure of anticancer therapy is due to intratumoral heterogeneity in these patients that limits the efficacy of single agents. Therefore, there is an urgent need for new anticancer drugs or drug combination regimens that possess increased activity against all cellular subtypes found within the tumor. In this study, we evaluated the in vitro antiproliferative activity of the cardiac glycosides (CGs) digitoxin and its synthetic analog MonoD on H460 lung cancer cells grown under different culture conditions. The CGs were tested alone in H460 cells under routine culture as well as in cells growing under short (24–72 h) and prolonged serum starvation (7 days) in order to evaluate the activity of drugs on cancer cells under varied degrees of proliferation. Our results showed that both CGs, and MonoD in particular, have potent antiproliferative activity at clinically relevant concentrations against cells in all the tested culture conditions. In contrast, paclitaxel, hydroxyurea and colchicine were only active in cells growing in routine culture conditions, and relatively inactive in serum-starved conditions. Importantly, both CGs were able to potentiate the effect of clinically relevant concentrations of hydroxyurea or paclitaxel in serum-starved conditions. When paclitaxel was used in combination with CGs, the highest antiproliferative effect was obtained when paclitaxel was administered first, followed by either digitoxin or MonoD. Our results indicate that CGs have potential clinical applications in translational oncology especially in combination with other drugs, and warrants further investigation of CGs in more advanced preclinical models of lung cancer.


Tumor Biology | 2017

Nigericin decreases the viability of multidrug-resistant cancer cells and lung tumorspheres and potentiates the effects of cardiac glycosides:

Juan Sebastian Yakisich; Neelam Azad; Vivek Kaushik; George A. O’Doherty; Anand Krishnan V. Iyer

Multiple factors including tumor heterogeneity and intrinsic or acquired resistance have been associated with drug resistance in lung cancer. Increased stemness and the plasticity of cancer cells have been identified as important mechanisms of resistance; therefore, treatments targeting cancer cells independent of stemness phenotype would be much more effective in treating lung cancer. In this article, we have characterized the anticancer effects of the antibiotic Nigericin in cells displaying varying degrees of stemness and resistance to anticancer drugs, arising from (1) routine culture conditions, (2) prolonged periods of serum starvation. These cells are highly resistant to conventional anticancer drugs such as Paclitaxel, Hydroxyurea, Colchicine, Obatoclax, Wortmannin, and LY294002, and the multidrug-resistant phenotype of cells growing under prolonged periods of serum starvation is likely the result of extensive rewiring of signaling pathways, and (3) lung tumorspheres that are enriched for cancer stem-like cells. We found that Nigericin potently inhibited the viability of cells growing under routine culture conditions, prolonged periods of serum starvation, and lung tumorspheres. In addition, we found that Nigericin downregulated the expression of key proteins in the Wnt canonical signaling pathway such as LRP6, Wnt5a/b, and β-catenin, but promotes β-catenin translocation into the nucleus. The antitumor effects of Nigericin were potentiated by the Wnt activator HLY78 and by therapeutic levels of the US Food and Drug Administration–approved drug Digitoxin and its novel synthetic analog MonoD. We believe that Nigericin may be used in a co-therapy model in combination with other novel chemotherapeutic agents in order to achieve potent inhibition of cancers that display varying degrees of stemness, potentially leading to sustained anticancer effects.


Journal of Cellular Biochemistry | 2017

Anti-Tumorigenic Potential of a Novel Orlistat-AICAR Combination in Prostate Cancer Cells

Clayton Wright; Anand Krishnan V. Iyer; Vivek Kaushik; Neelam Azad

Prostate cancer (PCa) is one of the leading causes of cancer‐related deaths in men worldwide. Fatty acid synthase (FASN) is reported to be overexpressed in several cancers including PCa, and this has led to clinical cancer treatments that utilize various FASN inhibitors such as the anti‐obesity drug, Orlistat. However, pharmacological limitations have impeded the progress in cancer treatments expected thus far with FASN inhibition. In this study, we investigated a novel therapeutic combination to enhance the toxic potential of Orlistat in three different PCa cell‐lines (DU145, PC3, and LNCaP). We show that Orlistat and 5‐Aminoimidazole‐4‐carboxamide ribonucleotide (AICAR) (AMP‐activated protein kinase [AMPK] activator) co‐treatment induces significant downregulation of two key fatty acid synthesis regulatory proteins (FASN, Sterol regulatory element‐binding protein 1 [SREBP‐1c]) as compared to control and Orlistat alone. Orlistat and AICAR co‐treatment induced a significant decrease in cell viability and proliferation, and a significant increase in apoptosis in all three PCa cell‐lines. Apoptosis induction was preceded by a marked increase in reactive oxygen species (ROS) production followed by G0/G1 cell cycle arrest and activation of pro‐apoptotic caspases. We also observed a significant decrease in migration potential and VEGF expression in Orlistat and AICAR co‐treated samples in all three PCa cell‐lines. Compound C (AMPK inhibitor) negatively affected some of the enhanced anti‐cancer effects observed with Orlistat treatment. We conclude that AICAR co‐treatment potentiates the anti‐proliferative effects of Orlistat at a low dose (100 µM), and this combination has the potential to be a viable and effective therapeutic option in PCa treatment. J. Cell. Biochem. 118: 3834–3845, 2017.


Cell death discovery | 2017

Antitumor effects of naturally occurring cardiac glycosides convallatoxin and peruvoside on human ER+ and triple-negative breast cancers

Vivek Kaushik; Neelam Azad; Juan Sebastian Yakisich; Anand Krishnan V. Iyer

Breast cancer is second most prevalent cancer in women, and the second only to lung cancer in cancer-related deaths. It is a heterogeneous disease and has several subtypes based on the presence or absence of hormone receptors and/or human epidermal growth factor receptor 2 (HER2). Hormone receptor-positive and HER2-enriched cancers can be targeted using hormone and HER2-targeting therapies such as trastuzumab or lapatinib. However, triple-negative breast cancers (TNBCs) do not express any of the receptors and therefore are resistant to most targeted therapies, and cytotoxic chemotherapies are the only viable option available for the treatment of TNBCs. Recently, cardiac glycosides (CGs) have emerged as potential anticancer agents that impart their antiproliferative effect by targeting multiple pathways. In this study our aim was to evaluate anticancer effects of two naturally occurring CGs, Convallatoxin (CT) and Peruvoside (PS), on ER+ and TNBCs cells. CT and PS demonstrated dose- and time-dependent cytotoxic effect on MCF-7 cells, which was further supported by loss of colony formation on drug treatment. CT and PS arrested MCF-7 cells in the G0/G1 phase and reduced the viability of MCF-7-derived mammospheres (MMs). Interestingly, while CT and PS imparted cell death in TNBCs cells from both Caucasians (MDA-MB-231 cells) and African Americans (MDA-MB-468 cells) in a dose- and time-dependent manner, the drugs were much more potent in MDA-MB-468 as compared with TNBC MDA-MB-231 cells. Both drugs significantly inhibited migration and invasion of both MCF-7 and MDA-MB-468 cells. An assessment of intracellular pathways indicated that both drugs were able to modulate several key cellular pathways such as EMT, cell cycle, proliferation and cell death in both cell types. Our data suggest a promising role for CGs in breast cancer treatment specifically in targeting TNBCs derived from African Americans, and provides impetus for further investigation of the anticancer potential of this class of drugs.


Tumor Biology | 2017

Anti-tumorigenic effects of a novel digitoxin derivative on both estrogen receptor–positive and triple-negative breast cancer cells:

Yogesh Kulkarni; Juan Sebastian Yakisich; Neelam Azad; Rajkumar Venkatadri; Vivek Kaushik; George A. O’Doherty; Anand Krishnan V. Iyer

While there are targeted treatments for triple positive breast cancers, lack of specific biomarkers for triple-negative breast cancers (TNBC) has hindered the development of therapies for this subset of cancers. In this study, we evaluated the anticancer properties of cardiac glycoside Digitoxin (Dtx) and its synthetic analog MonoD on breast cancer cell lines MCF-7 (estrogen receptor-positive breast cancer) and MDA-MB-468 (triple-negative breast cancer). Both cardiac glycosides, at concentrations within the therapeutic range, increased the fraction of cells in the G0/G1 phase of the cell cycle, decreased viability, and inhibited the migration of MCF-7 and MDA-MB-468 cells. Both cardiac glycosides increased production of superoxide and induced apoptosis in both cell types. Reduced protein levels of nuclear factor kappa B and IkappaB kinase-beta were found in cardiac glycoside-treated cells, indicating that the cellular effects of these compounds are mediated via nuclear factor kappa B pathway. This study demonstrates the cytotoxic potential of digitoxin, and more importantly its synthetic analog MonoD, in the treatment of triple-positive breast cancer and more importantly the aggressive triple-negative breast cancer. Collectively, this study provides a basis for the reevaluation of cardiac glycosides in the treatment of breast cancer and more importantly reveals their potential in the treatment of triple-negative breast cancers.

Collaboration


Dive into the Vivek Kaushik's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Vani Ramesh

Eastern Virginia Medical School

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge