Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Vivek Maheshwari is active.

Publication


Featured researches published by Vivek Maheshwari.


Langmuir | 2011

Adsorption and Desorption of DNA on Graphene Oxide Studied by Fluorescently Labeled Oligonucleotides

Marissa Wu; Ravindra Kempaiah; Po-Jung Jimmy Huang; Vivek Maheshwari; Juewen Liu

Being the newest member of the carbon materials family, graphene possesses many unique physical properties resulting is a wide range of applications. Recently, it was discovered that graphene oxide can effectively adsorb DNA, and at the same time, it can completely quench adsorbed fluorophores. These properties make it possible to prepare DNA-based optical sensors using graphene oxide. While practical analytical applications are being demonstrated, the fundamental understanding of binding between graphene oxide and DNA in solution received relatively less attention. In this work, we report that the adsorption of 12-, 18-, 24-, and 36-mer single-stranded DNA on graphene oxide is affected by several factors. For example, shorter DNAs are adsorbed more rapidly and bind more tightly to the surface of graphene. The adsorption is favored by a lower pH and a higher ionic strength. The presence of organic solvents such as ethanol can either increase or decrease adsorption depending on the ionic strength of the solution. By adding the cDNA, close to 100% desorption of the absorbed DNA on graphene can be achieved. On the other hand, if temperature is increased, only a small percentage of DNA is desorbed. Further, the adsorbed DNA can also be exchanged by free DNA in solution. These findings are important for further understanding of the interactions between DNA and graphene and for the optimization of DNA and graphene-based devices and sensors.


Science | 2006

High-Resolution Thin-Film Device to Sense Texture by Touch

Vivek Maheshwari; Ravi F. Saraf

Touch (or tactile) sensors are gaining renewed interest as the level of sophistication in the application of minimum invasive surgery and humanoid robots increases. The spatial resolution of current large-area (greater than 1 cm2) tactile sensor lags by more than an order of magnitude compared with the human finger. By using metal and semiconducting nanoparticles, a ∼100-nm-thick, large-area thin-film device is self-assembled such that the change in current density through the film and the electroluminescent light intensity are linearly proportional to the local stress. A stress image is obtained by pressing a copper grid and a United States 1-cent coin on the device and focusing the resulting electroluminescent light directly on the charge-coupled device. Both the lateral and height resolution of texture are comparable to the human finger at similar stress levels of ∼10 kilopascals.


Angewandte Chemie | 2008

Tactile Devices To Sense Touch on a Par with a Human Finger

Vivek Maheshwari; Ravi F. Saraf

Our sense of touch enables us to recognize texture and shape and to grasp objects. The challenge in making an electronic skin which can emulate touch for applications such as a humanoid robot or minimally invasive and remote surgery is both in mimicking the (passive) mechanical properties of the dermis and the characteristics of the sensing mechanism, especially the intrinsic digital nature of neurons. Significant progress has been made towards developing an electronic skin by using a variety of materials and physical concepts, but the challenge of emulating the sense of touch remains. Recently, a nanodevice was developed that has achieved the resolution to decipher touch on a par with the human finger; this resolution is over an order of magnitude improvement on previous devices with a sensing area larger than 1 cm(2). With its robust mechanical properties, this new system represents an important step towards the realization of artificial touch.


ACS Nano | 2011

Graphene as Cellular Interface: Electromechanical Coupling with Cells

Ravindra Kempaiah; Alfred Chung; Vivek Maheshwari

Interfacing cells with nanomaterials such as graphene, nanowires, and carbon nanotubes is useful for the integration of cellular physiology with electrical read outs. Here we show the interfacing of graphene sheets on the surface of yeast cells, leading to electromechanical coupling between the sheets and the cells. The cells are viable after the interfacing. The response caused by physiologically stressing the cells by exposure to alcohols, which causes a change in cell volume, can be observed in the electrical signal through graphene. The change in the cell volume leads to straining of the sheets, forming wrinkles which reduce the electrical conductivity. As the dynamic response of the cell can be observed, it is possible to differentiate between ethanol, 2-propanol, and water. We believe this will lead to further development of cell-based electrical devices and sensors.


Chemical Communications | 2011

Graphene as membrane for encapsulation of yeast cells: protective and electrically conducting

Ravindra Kempaiah; Shehan Salgado; Wai L. Chung; Vivek Maheshwari

Graphene sheets (chemically reduced), a high modulus and high thermal and electrically conductive material are coupled with yeast cells to form an encapsulating inorganic functional layer. The coupling of the high modulus sheets with the cells increases their stability to osmotic stresses. The sheets also allow the direct visualization of the cells in an electron microscope.


Langmuir | 2010

Ion mediated monolayer deposition of gold nanoparticles on microorganisms: discrimination by age.

Vivek Maheshwari; Dmitri E. Fomenko; Gaurav Singh; Ravi F. Saraf

A general strategy to target cells by nanoparticles for drug delivery, imaging, or diagnostics involves immunospecific binding between the probes and target molecules on the particles and on the cell surface, respectively. Usually, the macromolecular nature of the molecules requires a specific conformation to achieve the desired immunospecificity, and the extent of deposition of particles is limited by the number of receptor molecules present on the cell. In this report, we successfully obtain targeted binding by decorating the nanoparticle with simple ions, such as Ca(2+), without affecting the cells vitality. The yeast cells for study, Saccharomyces cerevisiae, have no specific electrostatic affinity toward positive charge as confirmed by lysine-coated Au nanoparticles. The specificity of nanoparticle binding is found to be directly related to the metabolic vitality of the yeast cell (i.e., a significantly larger deposition occurs on a younger generation with higher metabolism than on older cells). The ion-mediated targeted deposition seems to be a general phenomenon for biologically important ions, as demonstrated by the contrast between Mg(2+) and (toxic) Cd(2+). The high density of (percolating) nanoparticle deposition as a monolayer on the cells, as a result of the large number of ion receptors on the cell surface, is shown to be a potential method for building bioelectronic devices. The use of ions as an interface to target cells can have possible applications in diagnosing diseases and making biosensors using live cells.


Nano Letters | 2012

Ultrasoft 100 nm thick zero Poisson's ratio film with 60% reversible compressibility.

Chieu Nguyen; Vivek Maheshwari; Ravi F. Saraf

About a 100 nm thick multilayer film of nanoparticle monolayers and polymer layers is shown to behave like cellular-foam with a modulus below 100 KPa. The 1.25 cm radius film adhered to a rigid surface can be compressed reversibly to 60% strain. The more than 4 orders of magnitude lower modulus compared to its constituents is explained by considering local bending in the (nano)cellular structure, similar to cork and wings of beetles. As the rigidity of the polymer backbone is increased in just four monolayers, the modulus of the composite increases by over 70%. Electro-optical map of the strain distribution over the area of compression and increase in modulus with thickness indicates the films have zero Poissons ratio.


Analytical and Bioanalytical Chemistry | 2016

Nanoparticle chains as electrochemical sensors and electrodes

Long Pu; Maarij Baig; Vivek Maheshwari

With the advances in the field of nanotechnology, significant progress is being achieved in fabrication of nanoscale electrodes (nanoelectrodes) and using their properties for applications in multiple fields. Compared with conventional macroscale electrodes, nanoelectrodes offer many advantages that arise from their limited size. Self-assembled chains of metal nanoparticles in particular have drawn interest for fabrication of nanoelectrodes because of their unique electrical properties and geometric morphology. This article discusses the fabrication methods and potential applications of nanoparticle chains as nanoelectrodes in electrochemical systems and also as conductometric sensors. The challenges for such systems are also summarized.


Scientific Reports | 2017

Bio-inspired interlocking random 3-D structures for tactile and thermal sensing

Long Pu; Rohit Saraf; Vivek Maheshwari

Hierarchical nanostructures are tailored and used routinely in nature to accomplish tasks with high performance. Their formation in nature is accomplished without the use of any patterning process. Inspired by the performance of such structures, we have combined 2-D nanosheets with 1-D nanorods for functioning as electronic skin. These structures made in high density without any patterning process can be easily assembled over large areas. They can sense pressures as low as 0.4 Pa, with a response time in milliseconds. Further, these structures can also detect temperature changes with a non-linear response in the 298–400 K range, which is similar to skins perception of thermal stimuli. We illustrate this effect by showing that the device can differentiate between two 10 µl water droplets which are at room temperature and 323 K respectively.


Advanced Materials | 2018

A Light Harvesting, Self‐Powered Monolith Tactile Sensor Based on Electric Field Induced Effects in MAPbI3 Perovskite

Rohit Saraf; Long Pu; Vivek Maheshwari

Organolead trihalide perovskite MAPbI3 shows a distinctive combination of properties such as being ferroelectric and semiconducting, with ion migration effects under poling by electric fields. The combination of its ferroelectric and semiconducting nature is used to make a light harvesting, self-powered tactile sensor. This sensor interfaces ZnO nanosheets as a pressure-sensitive drain on the MAPbI3 film and once poled is operational for at least 72 h with just light illumination. The sensor is monolithic in structure, has linear response till 76 kPa, and is able to operate continuously as the energy harvesting mechanism is decoupled from its pressure sensing mechanism. It has a sensitivity of 0.57 kPa-1 , which can be modulated by the strength of the poling field. The understanding of these effects in perovskite materials and their application in power source free devices are of significance to a wide array of fields where these materials are being researched and applied.

Collaboration


Dive into the Vivek Maheshwari's collaboration.

Top Co-Authors

Avatar

Ravi F. Saraf

University of Nebraska–Lincoln

View shared research outputs
Top Co-Authors

Avatar

Long Pu

University of Waterloo

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Chieu Nguyen

University of Nebraska–Lincoln

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Rohit Saraf

University of Waterloo

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jennifer Kane

University of Nebraska–Lincoln

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Subrata Kundu

University of Nebraska–Lincoln

View shared research outputs
Researchain Logo
Decentralizing Knowledge