Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Viveka Vadyvaloo is active.

Publication


Featured researches published by Viveka Vadyvaloo.


Infection and Immunity | 2006

Role of the luxS Quorum-Sensing System in Biofilm Formation and Virulence of Staphylococcus epidermidis

Lin Xu; Hualin Li; Cuong Vuong; Viveka Vadyvaloo; Jianping Wang; Yufeng Yao; Michael Otto; Qian Gao

ABSTRACT Nosocomial infections caused by Staphylococcus epidermidis are characterized by biofilm formation on implanted medical devices. Quorum-sensing regulation plays a major role in the biofilm development of many bacterial pathogens. Here, we describe luxS, a quorum-sensing system in staphylococci that has a significant impact on biofilm development and virulence. We constructed an isogenic ΔluxS mutant strain of a biofilm-forming clinical isolate of S. epidermidis and demonstrated that luxS signaling is functional in S. epidermidis. The mutant strain showed increased biofilm formation in vitro and enhanced virulence in a rat model of biofilm-associated infection. Genetic complementation and addition of autoinducer 2-containing culture filtrate restored the wild-type phenotype, demonstrating that luxS repressed biofilm formation through a cell-cell signaling mechanism based on autoinducer 2 secretion. Enhanced production of the biofilm exopolysaccharide polysaccharide intercellular adhesin in the mutant strain is presumably the major cause of the observed phenotype. The agr quorum-sensing system has previously been shown to impact biofilm development and biofilm-associated infection in a way similar to that of luxS, although by regulation of different factors. Our study indicates a general scheme of quorum-sensing regulation of biofilm development in staphylococci, which contrasts with that observed in many other bacterial pathogens.


Applied and Environmental Microbiology | 2002

Membranes of Class IIa Bacteriocin-Resistant Listeria monocytogenes Cells Contain Increased Levels of Desaturated and Short-Acyl-Chain Phosphatidylglycerols

Viveka Vadyvaloo; John W. Hastings; Marthinus J. van der Merwe; Marina Rautenbach

ABSTRACT A major concern in the use of class IIa bacteriocins as food preservatives is the well-documented resistance development in target Listeria strains. We studied the relationship between leucocin A, a class IIa bacteriocin, and the composition of the major phospholipid, phosphatidylglycerol (PG), in membranes of both sensitive and resistant L. monocytogenes strains. Two wild-type strains, L. monocytogenes B73 and 412, two spontaneous mutants of L. monocytogenes B73 with intermediate resistance to leucocin A (±2.4 and ±4 times the 50% inhibitory concentrations [IC50] for sensitive strains), and two highly resistant mutants of each of the wild-type strains (>500 times the IC50 for sensitive strains) were analyzed. Electrospray mass spectrometry analysis showed an increase in the ratios of unsaturated to saturated and short- to long-acyl-chain species of PG in all the resistant L. monocytogenes strains in our study, although their sensitivities to leucocin A were significantly different. This alteration in membrane phospholipids toward PGs containing shorter, unsaturated acyl chains suggests that resistant strains have cells with a more fluid membrane. The presence of this phenomenon in a strain (L. monocytogenes 412P) which is resistant to both leucocin A and pediocin PA-1 may indicate a link between membrane composition and class IIa bacteriocin resistance in some L. monocytogenes strains. Treatment of strains with sterculic acid methyl ester (SME), a desaturase inhibitor, resulted in significant changes in the leucocin A sensitivity of the intermediate-resistance strains but no changes in the sensitivity of highly resistant strains. There was, however, a decrease in the amount of unsaturated and short-acyl-chain PGs after treatment with SME in one of the intermediate and both of the highly resistant strains, but the opposite effect was observed for the sensitive strains. It appears, therefore, that membrane adaptation may be part of a resistance mechanism but that several resistance mechanisms may contribute to a resistance phenotype and that levels of resistance vary according to the type of mechanisms present.


PLOS Pathogens | 2010

Transit through the Flea Vector Induces a Pretransmission Innate Immunity Resistance Phenotype in Yersinia pestis

Viveka Vadyvaloo; Clayton O. Jarrett; Daniel E. Sturdevant; Florent Sebbane; B. Joseph Hinnebusch

Yersinia pestis, the agent of plague, is transmitted to mammals by infected fleas. Y. pestis exhibits a distinct life stage in the flea, where it grows in the form of a cohesive biofilm that promotes transmission. After transmission, the temperature shift to 37°C induces many known virulence factors of Y. pestis that confer resistance to innate immunity. These factors are not produced in the low-temperature environment of the flea, however, suggesting that Y. pestis is vulnerable to the initial encounter with innate immune cells at the flea bite site. In this study, we used whole-genome microarrays to compare the Y. pestis in vivo transcriptome in infective fleas to in vitro transcriptomes in temperature-matched biofilm and planktonic cultures, and to the previously characterized in vivo gene expression profile in the rat bubo. In addition to genes involved in metabolic adaptation to the flea gut and biofilm formation, several genes with known or predicted roles in resistance to innate immunity and pathogenicity in the mammal were upregulated in the flea. Y. pestis from infected fleas were more resistant to phagocytosis by macrophages than in vitro-grown bacteria, in part attributable to a cluster of insecticidal-like toxin genes that were highly expressed only in the flea. Our results suggest that transit through the flea vector induces a phenotype that enhances survival and dissemination of Y. pestis after transmission to the mammalian host.


BMC Microbiology | 2008

AI-2-dependent gene regulation in Staphylococcus epidermidis

Min Li; Amer E. Villaruz; Viveka Vadyvaloo; Daniel E. Sturdevant; Michael Otto

BackgroundAutoinducer 2 (AI-2), a widespread by-product of the LuxS-catalyzed S-ribosylhomocysteine cleavage reaction in the activated methyl cycle, has been suggested to serve as an intra- and interspecies signaling molecule, but in many bacteria AI-2 control of gene expression is not completely understood. Particularly, we have a lack of knowledge about AI-2 signaling in the important human pathogens Staphylococcus aureus and S. epidermidis.ResultsTo determine the role of LuxS and AI-2 in S. epidermidis, we analyzed genome-wide changes in gene expression in an S. epidermidis luxS mutant and after addition of AI-2 synthesized by over-expressed S. epidermidis Pfs and LuxS enzymes. Genes under AI-2 control included mostly genes involved in sugar, nucleotide, amino acid, and nitrogen metabolism, but also virulence-associated genes coding for lipase and bacterial apoptosis proteins. In addition, we demonstrate by liquid chromatography/mass-spectrometry of culture filtrates that the pro-inflammatory phenol-soluble modulin (PSM) peptides, key virulence factors of S. epidermidis, are under luxS/AI-2 control.ConclusionOur results provide a detailed molecular basis for the role of LuxS in S. epidermidis virulence and suggest a signaling function for AI-2 in this bacterium.


Cellular Microbiology | 2007

Acute oral toxicity of Yersinia pseudotuberculosis to fleas: implications for the evolution of vector‐borne transmission of plague

David L. Erickson; Nicholas R. Waterfield; Viveka Vadyvaloo; Daniel Long; Elizabeth R. Fischer; Richard H. ffrench-Constant; B. Joseph Hinnebusch

Yersinia pestis diverged from Yersinia pseudotuberculosis≤ 20 000 years ago, during which time it evolved to be transmitted by fleas. In comparing the ability of these closely related species to infect the rat flea Xenopsylla cheopis, we found that Y. pseudotuberculosis, unlike Y. pestis, is orally toxic to fleas. Fleas showed signs of acute toxicity, including diarrhoea, immediately after feeding on blood containing Y. pseudotuberculosis in response to protein toxin(s) produced by the bacteria. Adherence of Y. pseudotuberculosis to the midgut and large intracellular vacuoles in midgut epithelial cells were detected during the first 24 h after infection. The insect pathogen Photorhabdus luminescens and its TcdA1 and TcdB1‐TccC1 insecticidal toxin complexes were similarly toxic to fleas, implicating the toxin complex (tc) genes also present in Yersinia species. However, the Y. pestis and Y. pseudotuberculosis TcaAB and TcaC‐TccC proteins were non‐toxic to fleas, and Y. pseudotuberculosis mutants deleted of tc genes retained acute toxicity. Our results indicate that loss of one or more insect gut toxins was a critical step in the recent evolution of flea‐borne transmission in the genus Yersinia. Changes in the tc insecticidal genes do not appear to have been responsible, but may have had other effects on Yersinia–flea interactions.


Journal of Bacteriology | 2012

Hfq regulates biofilm gut blockage that facilitates flea-borne transmission of Yersinia pestis.

Katherine A. Rempe; Angela K. Hinz; Viveka Vadyvaloo

The plague bacillus Yersinia pestis can achieve transmission by biofilm blockage of the foregut proventriculus of its flea vector. Hfq is revealed to be essential for biofilm blockage formation and acquisition and fitness of Y. pestis during flea gut infection, consistent with posttranscriptional regulatory mechanisms in plague transmission.


Frontiers in Cellular and Infection Microbiology | 2014

Mechanisms of post-transcriptional gene regulation in bacterial biofilms

Viveka Vadyvaloo; Luary Martínez

Biofilms are characterized by a dense multicellular community of microorganisms that can be formed by the attachment of bacteria to an inert surface and to each other. The development of biofilm involves the initial attachment of planktonic bacteria to a surface, followed by replication, cell-to-cell adhesion to form microcolonies, maturation, and detachment. Mature biofilms are embedded in a self-produced extracellular polymeric matrix composed primarily of bacterial-derived exopolysaccharides, specialized proteins, adhesins, and occasionally DNA. Because the synthesis and assembly of biofilm matrix components is an exceptionally complex process, the transition between its different phases requires the coordinate expression and simultaneous regulation of many genes by complex genetic networks involving all levels of gene regulation. The finely controlled intracellular level of the chemical second messenger molecule, cyclic-di-GMP is central to the post-transcriptional mechanisms governing the switch between the motile planktonic lifestyle and the sessile biofilm forming state in many bacteria. Several other post-transcriptional regulatory mechanisms are known to dictate biofilm development and assembly and these include RNA-binding proteins, small non-coding RNAs, toxin-antitoxin systems, riboswitches, and RNases. Post-transcriptional regulation is therefore a powerful molecular mechanism employed by bacteria to rapidly adjust to the changing environment and to fine tune gene expression to the developmental needs of the cell. In this review, we discuss post-transcriptional mechanisms that influence the biofilm developmental cycle in a variety of pathogenic bacteria.


Environmental Microbiology | 2015

The Yersinia pestis HmsCDE regulatory system is essential for blockage of the oriental rat flea (Xenopsylla cheopis), a classic plague vector

Alexander G. Bobrov; Olga Kirillina; Viveka Vadyvaloo; Benjamin J. Koestler; Angela K. Hinz; Dietrich Mack; Christopher M. Waters; Robert D. Perry

The second messenger molecule cyclic diguanylate is essential for Yersinia pestis biofilm formation that is important for blockage-dependent plague transmission from fleas to mammals. Two diguanylate cyclases (DGCs) HmsT and Y3730 (HmsD) are responsible for biofilm formation in vitro and biofilm-dependent blockage in the oriental rat flea Xenopsylla cheopis respectively. Here, we have identified a tripartite signalling system encoded by the y3729-y3731 operon that is responsible for regulation of biofilm formation in different environments. We present genetic evidence that a putative inner membrane-anchored protein with a large periplasmic domain Y3729 (HmsC) inhibits HmsD DGC activity in vitro while an outer membrane Pal-like putative lipoprotein Y3731 (HmsE) counteracts HmsC to activate HmsD in the gut of X. cheopis. We propose that HmsE is a critical element in the transduction of environmental signal(s) required for HmsD-dependent biofilm formation.


Microbiology | 2015

Role of the PhoP-PhoQ gene regulatory system in adaptation of Yersinia pestis to environmental stress in the flea digestive tract.

Viveka Vadyvaloo; Austin K. Viall; Clayton O. Jarrett; Angela K. Hinz; Daniel E. Sturdevant; B. Joseph Hinnebusch

The Yersinia pestis PhoPQ gene regulatory system is induced during infection of the flea digestive tract and is required to produce adherent biofilm in the foregut, which greatly enhances bacterial transmission during a flea bite. To understand the in vivo context of PhoPQ induction and to determine PhoP-regulated targets in the flea, we undertook whole-genome comparative transcriptional profiling of Y. pestis WT and ΔphoP strains isolated from infected fleas and from temperature-matched in vitro planktonic and flow-cell biofilm cultures. In the absence of PhoP regulation, the gene expression program indicated that the bacteria experienced diverse physiological stresses and were in a metabolically less active state. Multiple stress response genes, including several toxin–antitoxin loci and YhcN family genes responsible for increased acid tolerance, were upregulated in the phoP mutant during flea infection. The data implied that PhoPQ was induced by low pH in the flea gut, and that PhoP modulated physiological adaptation to acid and other stresses encountered during infection of the flea. This adaptive response, together with PhoP-dependent modification of the bacterial outer surface that includes repression of pH 6 antigen fimbriae, supports stable biofilm development in the flea foregut.


PLOS ONE | 2015

A LysR-Type Transcriptional Regulator, RovM, Senses Nutritional Cues Suggesting that It Is Involved in Metabolic Adaptation of Yersinia pestis to the Flea Gut.

Viveka Vadyvaloo; Angela K. Hinz

Yersinia pestis has evolved as a clonal variant of Yersinia pseudotuberculosis to cause flea-borne biofilm–mediated transmission of the bubonic plague. The LysR-type transcriptional regulator, RovM, is highly induced only during Y. pestis infection of the flea host. RovM homologs in other pathogens regulate biofilm formation, nutrient sensing, and virulence; including in Y. pseudotuberculosis, where RovM represses the major virulence factor, RovA. Here the role that RovM plays during flea infection was investigated using a Y. pestis KIM6+ strain deleted of rovM, ΔrovM. The ΔrovM mutant strain was not affected in characteristic biofilm gut blockage, growth, or survival during single infection of fleas. Nonetheless, during a co-infection of fleas, the ΔrovM mutant exhibited a significant competitive fitness defect relative to the wild type strain. This competitive fitness defect was restored as a fitness advantage relative to the wild type in a ΔrovM mutant complemented in trans to over-express rovM. Consistent with this, Y. pestis strains, producing elevated transcriptional levels of rovM, displayed higher growth rates, and differential ability to form biofilm in response to specific nutrients in comparison to the wild type. In addition, we demonstrated that rovA was not repressed by RovM in fleas, but that elevated transcriptional levels of rovM in vitro correlated with repression of rovA under specific nutritional conditions. Collectively, these findings suggest that RovM likely senses specific nutrient cues in the flea gut environment, and accordingly directs metabolic adaptation to enhance flea gut colonization by Y. pestis.

Collaboration


Dive into the Viveka Vadyvaloo's collaboration.

Top Co-Authors

Avatar

Angela K. Hinz

Washington State University

View shared research outputs
Top Co-Authors

Avatar

B. Joseph Hinnebusch

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Daniel E. Sturdevant

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Clayton O. Jarrett

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Michael Otto

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Amer E. Villaruz

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge