Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Vivian Weinberg is active.

Publication


Featured researches published by Vivian Weinberg.


International Journal of Radiation Oncology Biology Physics | 2001

Intensity-modulated radiotherapy in the treatment of nasopharyngeal carcinoma: an update of the UCSF experience

Nancy Y. Lee; P. Xia; Jeanne M. Quivey; Khalil Sultanem; Ian Poon; Clayton Akazawa; Pam Akazawa; Vivian Weinberg; Karen K. Fu

PURPOSE To update our experience with intensity-modulated radiotherapy (IMRT) in the treatment of nasopharyngeal carcinoma (NPC). METHODS AND MATERIALS Between April 1995 and October 2000, 67 patients underwent IMRT for NPC at the University of California-San Francisco (UCSF). There were 20 females and 47 males, with a mean age of 49 (range 17-82). The disease was Stage I in 8 (12%), Stage II in 12 (18%), Stage III in 22 (33%), and Stage IV in 25 (37%). IMRT was delivered using three different techniques: 1) manually cut partial transmission blocks, 2) computer-controlled auto-sequencing segmental multileaf collimator (SMLC), and 3) sequential tomotherapy using a dynamic multivane intensity modulating collimator (MIMiC). Fifty patients received concomitant cisplatinum and adjuvant cisplatinum and 5-FU chemotherapy according to the Intergroup 0099 trial. Twenty-six patients had fractionated high-dose-rate intracavitary brachytherapy boost and 1 patient had gamma knife radiosurgery boost after external beam radiotherapy. The prescribed dose was 65-70 Gy to the gross tumor volume (GTV) and positive neck nodes, 60 Gy to the clinical target volume (CTV), 50-60 Gy to the clinically negative neck, and 5-7 Gy in 2 fractions for the intracavitary brachytherapy boost. Acute and late normal tissue effects were graded according to the Radiation Therapy Oncology Group (RTOG) radiation morbidity scoring criteria. The local progression-free, local-regional progression-free, distant metastasis-free rates, and the overall survival were calculated using the Kaplan-Meier method. RESULTS With a median follow-up of 31 months (range 7 to 72 months), there has been one local recurrence at the primary site. One patient failed in the neck. Seventeen patients developed distant metastases; 5 of these patients have died. The 4-year estimates of local progression-free, local-regional progression-free, and distant metastases-free rates were 97%, 98%, and 66% respectively. The 4-year estimate of overall survival was 88%. The worst acute toxicity documented was as follows: Grade 1 or 2 in 51 patients, Grade 3 in 15 patients, and Grade 4 in 1 patient. The worst late toxicity was Grade 1 in 20 patients, Grade 2 in 15 patients, Grade 3 in 7 patients, and Grade 4 in 1 patient. At 3 months after IMRT, 64% of the patients had Grade 2, 28% had Grade 1, and 8% had Grade 0 xerostomia. Xerostomia decreased with time. At 24 months, only one of the 41 evaluable patients had Grade 2, 32% had Grade 1, and 66% had Grade 0 or no xerostomia. Analysis of the dose-volume histograms (DVHs) showed that the average maximum, mean, and minimum dose delivered were 79.3 Gy, 74.5 Gy, and 49.4 Gy to the GTV, and 78.9 Gy, 68.7 Gy, and 36.8 Gy to the CTV. An average of only 3% of the GTV and 3% of the CTV received less than 95% of the prescribed dose. CONCLUSION Excellent local-regional control for NPC was achieved with IMRT. IMRT provided excellent tumor target coverage and allowed the delivery of a high dose to the target with significant sparing of the salivary glands and other nearby critical normal tissues.


Science Translational Medicine | 2013

Metabolic imaging of patients with prostate cancer using hyperpolarized [1-¹³C]pyruvate.

Sarah J. Nelson; John Kurhanewicz; Daniel B. Vigneron; Peder E. Z. Larson; Andrea L. Harzstark; Marcus Ferrone; Mark Van Criekinge; Jose W. Chang; Robert Bok; Ilwoo Park; Galen D. Reed; Lucas Carvajal; Eric J. Small; Pamela N. Munster; Vivian Weinberg; Jan Henrik Ardenkjaer-Larsen; Albert P. Chen; Ralph E. Hurd; Liv-Ingrid Odegardstuen; Fraser Robb; James Tropp; Jonathan Murray

Metabolic imaging with hyperpolarized pyruvate was used to safely and noninvasively visualize prostate tumors in patients. The Hyperpolarized Prostate Cancer cells have a different metabolism than healthy cells. Specifically, they consume more pyruvate—a key component in glycolysis—than their normal counterparts. Nelson and colleagues therefore used a hyperpolarized form of pyruvate ([1-13C]pyruvate) to sensitively image increased levels of its product, [1-13C]lactate, as well as the flux of pyruvate to lactate. The [1-13C]pyruvate agent was used here in a first-in-human study in men with prostate cancer. Patients received varying doses of [1-13C]pyruvate that were found to be safe. These patients were then rapidly imaged with hyperpolarized 13C magnetic resonance (MR), which was able to provide dynamic (time course) information as well as three-dimensional (3D) (spatial) data at a single time point. Tumors were detected in all patients with biopsy-proven cancer. And, importantly, with 13C MR imaging (MRI), Nelson et al. were able to see cancer in regions of the prostate that were previously considered to be tumor-free upon inspection with other conventional anatomic imaging methods. With the ability to safely image tumor location and also follow tumor metabolism over time, hyperpolarized 13C MRI may be useful both for initial diagnosis and for monitoring therapy. Although the patients in this study had early-stage disease, the authors believe that [1-13C]lactate/[1-13C]pyruvate flux will only increase with tumor grade, making this imaging technology amenable to more advanced and aggressive cancers. Future studies will focus on optimizing agent preparation and delivery to ensure that this imaging technology can benefit patients in all clinical settings. This first-in-man imaging study evaluated the safety and feasibility of hyperpolarized [1-13C]pyruvate as an agent for noninvasively characterizing alterations in tumor metabolism for patients with prostate cancer. Imaging living systems with hyperpolarized agents can result in more than 10,000-fold enhancement in signal relative to conventional magnetic resonance (MR) imaging. When combined with the rapid acquisition of in vivo 13C MR data, it is possible to evaluate the distribution of agents such as [1-13C]pyruvate and its metabolic products lactate, alanine, and bicarbonate in a matter of seconds. Preclinical studies in cancer models have detected elevated levels of hyperpolarized [1-13C]lactate in tumor, with the ratio of [1-13C]lactate/[1-13C]pyruvate being increased in high-grade tumors and decreased after successful treatment. Translation of this technology into humans was achieved by modifying the instrument that generates the hyperpolarized agent, constructing specialized radio frequency coils to detect 13C nuclei, and developing new pulse sequences to efficiently capture the signal. The study population comprised patients with biopsy-proven prostate cancer, with 31 subjects being injected with hyperpolarized [1-13C]pyruvate. The median time to deliver the agent was 66 s, and uptake was observed about 20 s after injection. No dose-limiting toxicities were observed, and the highest dose (0.43 ml/kg of 230 mM agent) gave the best signal-to-noise ratio for hyperpolarized [1-13C]pyruvate. The results were extremely promising in not only confirming the safety of the agent but also showing elevated [1-13C]lactate/[1-13C]pyruvate in regions of biopsy-proven cancer. These findings will be valuable for noninvasive cancer diagnosis and treatment monitoring in future clinical trials.


International Journal of Radiation Oncology Biology Physics | 2003

Evaluation of ultrasound-based prostate localization for image-guided radiotherapy.

Katja M. Langen; Jean Pouliot; C. Anezinos; M Aubin; Alexander Gottschalk; I-C. Hsu; D. Lowther; Yu-Ming Liu; Katsuto Shinohara; Lynn Verhey; Vivian Weinberg; M. Roach

To evaluate the use of the ultrasound-based BAT system for daily prostate alignment. Prostate alignments using the BAT system were compared with alignments using radiographic images of implanted radiopaque markers. The latter alignments were used as a reference. The difference between the BAT and marker alignments represents the displacements that would remain if the alignments were done using ultrasonography. The inter-user variability of the contour alignment process was assessed. On the basis of the marker alignments, the initial displacement of the prostate in the AP, superoinferior, and lateral direction was -0.9 +/- 3.9, 0.1 +/- 3.9, and 0.2 +/- 3.4 mm respectively. The directed differences between the BAT and marker alignments in the respective directions were 0.2 +/- 3.7, 2.7 +/- 3.9, and 1.6 +/- 3.1 mm. The occurrence of displacements >/=5 mm was reduced by a factor of two in the AP direction after the BAT system was used. Among eight users, the average range of couch shifts due to contour alignment variability was 7, 7, and 5 mm in the antero-posterior (AP), superoinferior, and lateral direction, respectively. In our study, the BAT alignments were systematically different from the marker alignments in the superoinferior, and lateral directions. The remaining random variability of the prostate position after the ultrasound-based alignment was similar to the initial variability. However, the occurrence of displacements >/=5 mm was reduced in the AP direction. The inter-user variation of the contour alignment process was significant.


Cancer Research | 2009

Potentiating Endogenous Antitumor Immunity to Prostate Cancer through Combination Immunotherapy with CTLA4 Blockade and GM-CSF

Lawrence Fong; Serena S. Kwek; Shaun O'Brien; Brian Kavanagh; Douglas G. McNeel; Vivian Weinberg; Amy M. Lin; Jonathan E. Rosenberg; Charles J. Ryan; Brian I. Rini; Eric J. Small

CTL-associated antigen 4 (CTLA4) is a costimulatory molecule expressed on activated T cells that delivers an inhibitory signal to these T cells. CTLA4 blockade with antibody treatment has been shown to augment antitumor immunity in animal models and is being developed as a treatment for cancer patients. As has been seen in preclinical models, combining CTLA4 blockade and granulocyte macrophage colony-stimulating factor (GM-CSF)-based immunotherapies can enhance the antitumor efficacy of this approach. We therefore examined whether CTLA4 blockade could be combined with GM-CSF administration. We treated 24 patients with metastatic, castration-resistant prostate cancer in a phase I trial where sequential cohorts were treated with increasing doses of ipilimumab, a fully human anti-CTLA4 antibody. Study subjects also received s.c. injections of GM-CSF at a fixed dose. Of the six patients treated at the highest dose level, three had confirmed PSA declines of >50%, including one patient that had a partial response in visceral metastases. Expansion of activated, circulating CD25(+) CD69(+) CD8(+) T cells occurred more frequently at higher doses of treatment and was greater in magnitude than was seen in patients who received the same doses of either ipilimumab or GM-CSF alone. By screening sera with protein arrays, we showed that our treatment can induce antibody responses to NY-ESO-1. These results show that this combination immunotherapy can induce the expansion not only of activated effector CD8 T cells in vivo but also of T cells that are specific for known tumor-associated antigens from the endogenous immune repertoire.


Proceedings of the National Academy of Sciences of the United States of America | 2008

Changes in prostate gene expression in men undergoing an intensive nutrition and lifestyle intervention.

Dean Ornish; Mark Jesus M. Magbanua; Gerdi Weidner; Vivian Weinberg; Colleen Kemp; Christopher D. Green; Michael D. Mattie; Ruth Marlin; Jeff Simko; Katsuto Shinohara; Christopher M. Haqq; Peter R. Carroll

Epidemiological and prospective studies indicate that comprehensive lifestyle changes may modify the progression of prostate cancer. However, the molecular mechanisms by which improvements in diet and lifestyle might affect the prostate microenvironment are poorly understood. We conducted a pilot study to examine changes in prostate gene expression in a unique population of men with low-risk prostate cancer who declined immediate surgery, hormonal therapy, or radiation and participated in an intensive nutrition and lifestyle intervention while undergoing careful surveillance for tumor progression. Consistent with previous studies, significant improvements in weight, abdominal obesity, blood pressure, and lipid profile were observed (all P < 0.05), and surveillance of low-risk patients was safe. Gene expression profiles were obtained from 30 participants, pairing RNA samples from control prostate needle biopsy taken before intervention to RNA from the same patients 3-month postintervention biopsy. Quantitative real-time PCR was used to validate array observations for selected transcripts. Two-class paired analysis of global gene expression using significance analysis of microarrays detected 48 up-regulated and 453 down-regulated transcripts after the intervention. Pathway analysis identified significant modulation of biological processes that have critical roles in tumorigenesis, including protein metabolism and modification, intracellular protein traffic, and protein phosphorylation (all P < 0.05). Intensive nutrition and lifestyle changes may modulate gene expression in the prostate. Understanding the prostate molecular response to comprehensive lifestyle changes may strengthen efforts to develop effective prevention and treatment. Larger clinical trials are warranted to confirm the results of this pilot study.


International Journal of Radiation Oncology Biology Physics | 2010

Spinal cord tolerance for stereotactic body radiotherapy.

Arjun Sahgal; Lijun Ma; Iris C. Gibbs; Peter C. Gerszten; Sam Ryu; Scott G. Soltys; Vivian Weinberg; Shun Wong; Eric L. Chang; Jack F. Fowler; David A. Larson

PURPOSE Dosimetric data are reported for five cases of radiation-induced myelopathy after stereotactic body radiotherapy (SBRT) to spinal tumors. Analysis per the biologically effective dose (BED) model was performed. METHODS AND MATERIALS Five patients with radiation myelopathy were compared to a subset of 19 patients with no radiation myelopathy post-SBRT. In all patients, the thecal sac was contoured to represent the spinal cord, and doses to the maximum point, 0.1-, 1-, 2-, and 5-cc volumes, were analyzed. The mean normalized 2-Gy-equivalent BEDs (nBEDs), calculated using an alpha/beta value of 2 for late toxicity with units Gy 2/2, were compared using the t test and analysis of variance test. RESULTS Radiation myelopathy was observed at the maximum point with doses of 25.6 Gy in two fractions, 30.9 Gy in three fractions, and 14.8, 13.1, and 10.6 Gy in one fraction. Overall, there was a significant interaction between patient subsets and volume based on the nBED (p = 0.0003). Given individual volumes, a significant difference was observed for the mean maximum point nBED (p = 0.01). CONCLUSIONS The maximum point dose should be respected for spine SBRT. For single-fraction SBRT 10 Gy to a maximum point is safe, and up to five fractions an nBED of 30 to 35 Gy 2/2 to the thecal sac also poses a low risk of radiation myelopathy.


The Journal of Urology | 2008

von Hippel-Lindau Gene Status and Response to Vascular Endothelial Growth Factor Targeted Therapy for Metastatic Clear Cell Renal Cell Carcinoma

Toni K. Choueiri; Susan A.J. Vaziri; Erich Jaeger; Paul Elson; Laura S. Wood; Ish Prasad Bhalla; Eric J. Small; Vivian Weinberg; Nancy Sein; Jeff Simko; Ali Reza Golshayan; Linda Sercia; Ming Zhou; Frederic M. Waldman; Brian I. Rini; Ronald M. Bukowski; Ram Ganapathi

PURPOSE The von Hippel-Lindau (VHL) gene is often inactivated (by mutation or promoter hypermethylation) in renal cell carcinoma but the relation to therapeutic outcome is unclear. MATERIALS AND METHODS Patients with metastatic clear cell renal cell carcinoma with available baseline tumor samples who received vascular endothelial growth factor targeted therapy were included in analysis. Patient characteristics, VHL gene status and clinical outcome were documented. Our primary end point was to test for response rate in relation to VHL inactivation. Progression-free survival and overall survival in relation to VHL status were investigated as secondary end points. RESULTS A total of 123 patients were evaluable. Response rate, median progression-free survival and median overall survival were 37% (95% CI 28-46), 10.8 (95% CI 7.7-14.8) and 29.8 (CI not estimable) months, respectively. Patients with VHL inactivation had a response rate of 41% vs 31% for those with wild-type VHL (p = 0.34). Patients with loss of function mutations (frameshift, nonsense, splice and in-frame deletions/insertions) had a 52% response rate vs 31% with wild-type VHL (p = 0.04). On multivariate analysis the presence of a loss of function mutation remained an independent prognostic factor associated with improved response. Progression-free survival and overall survival were not significantly different based on VHL status. CONCLUSIONS To our knowledge this is the largest analysis investigating the impact of VHL inactivation on the outcome of vascular endothelial growth factor targeted agents in metastatic renal cell carcinoma. We did not find a statistically significant increase in response to vascular endothelial growth factor targeted agents in patients with VHL inactivation. Loss of function mutations identified a population of patients with a greater response. Investigation of downstream markers is under way.


Blood | 2008

CTLA4 blockade expands FoxP3+ regulatory and activated effector CD4+ T cells in a dose-dependent fashion

Brian Kavanagh; Shaun O'Brien; David Lee; Yafei Hou; Vivian Weinberg; B. I. Rini; James P. Allison; Eric J. Small; Lawrence Fong

Cytotoxic T lymphocyte-associated antigen 4 (CTLA4) delivers inhibitory signals to activated T cells. CTLA4 is constitutively expressed on regulatory CD4(+) T cells (Tregs), but its role in these cells remains unclear. CTLA4 blockade has been shown to induce antitumor immunity. In this study, we examined the effects of anti-CTLA4 antibody on the endogenous CD4(+) T cells in cancer patients. We show that CTLA4 blockade induces an increase not only in the number of activated effector CD4(+) T cells, but also in the number of CD4(+) FoxP3(+) Tregs. Although the effects were dose-dependent, CD4(+) FoxP3(+) regulatory T cells could be expanded at lower antibody doses. In contrast, expansion of effector T cells was seen only at the highest dose level studied. Moreover, these expanded CD4(+) FoxP3(+) regulatory T cells are induced to proliferate with treatment and possess suppressor function. Our results demonstrate that treatment with anti-CTLA4 antibody does not deplete human CD4(+) FoxP3(+) Tregs in vivo, but rather may mediate its effects through the activation of effector T cells. Our results also suggest that CTLA4 may inhibit Treg proliferation similar to its role on effector T cells. This study is registered at http://www.clinicaltrials.gov/ct2/show/NCT00064129, registry number NCT00064129.


International Journal of Radiation Oncology Biology Physics | 2012

Reirradiation Human Spinal Cord Tolerance for Stereotactic Body Radiotherapy

Arjun Sahgal; Lijun Ma; Vivian Weinberg; Iris C. Gibbs; Sam T. Chao; Ung Kyu Chang; Maria Werner-Wasik; Liliyanna Angelov; Eric L. Chang; Moon Jun Sohn; Scott G. Soltys; D. Letourneau; Sam Ryu; Peter C. Gerszten; Jack F. Fowler; C. Shun Wong; David A. Larson

PURPOSE We reviewed the treatment for patients with spine metastases who initially received conventional external beam radiation (EBRT) and were reirradiated with 1-5 fractions of stereotactic body radiotherapy (SBRT) who did or did not subsequently develop radiation myelopathy (RM). METHODS AND MATERIALS Spinal cord dose-volume histograms (DVHs) for 5 RM patients (5 spinal segments) and 14 no-RM patients (16 spine segments) were based on thecal sac contours at retreatment. Dose to a point within the thecal sac that receives the maximum dose (P(max)), and doses to 0.1-, 1.0-, and 2.0-cc volumes within the thecal sac were reviewed. The biologically effective doses (BED) using α/β = 2 Gy for late spinal cord toxicity were calculated and normalized to a 2-Gy equivalent dose (nBED = Gy(2/2)). RESULTS The initial conventional radiotherapy nBED ranged from ~30 to 50 Gy(2/2) (median ~40 Gy(2/2)). The SBRT reirradiation thecal sac mean P(max) nBED in the no-RM group was 20.0 Gy(2/2) (95% confidence interval [CI], 10.8-29.2), which was significantly lower than the corresponding 67.4 Gy(2/2) (95% CI, 51.0-83.9) in the RM group. The mean total P(max) nBED in the no-RM group was 62.3 Gy(2/2) (95% CI, 50.3-74.3), which was significantly lower than the corresponding 105.8 Gy(2/2) (95% CI, 84.3-127.4) in the RM group. The fraction of the total P(max) nBED accounted for by the SBRT P(max) nBED for the RM patients ranged from 0.54 to 0.78 and that for the no-RM patients ranged from 0.04 to 0.53. CONCLUSIONS SBRT given at least 5 months after conventional palliative radiotherapy with a reirradiation thecal sac P(max) nBED of 20-25 Gy(2/2) appears to be safe provided the total P(max) nBED does not exceed approximately 70 Gy(2/2), and the SBRT thecal sac P(max) nBED comprises no more than approximately 50% of the total nBED.


International Journal of Radiation Oncology Biology Physics | 2013

Probabilities of Radiation Myelopathy Specific to Stereotactic Body Radiation Therapy to Guide Safe Practice

Arjun Sahgal; Vivian Weinberg; Lijun Ma; Eric L. Chang; Sam T. Chao; Alexander Muacevic; Alessandra Gorgulho; Scott G. Soltys; Peter C. Gerszten; Sam Ryu; Lilyana Angelov; Iris C. Gibbs; C. Shun Wong; David A. Larson

PURPOSE Dose-volume histogram (DVH) results for 9 cases of post spine stereotactic body radiation therapy (SBRT) radiation myelopathy (RM) are reported and compared with a cohort of 66 spine SBRT patients without RM. METHODS AND MATERIALS DVH data were centrally analyzed according to the thecal sac point maximum (Pmax) volume, 0.1- to 1-cc volumes in increments of 0.1 cc, and to the 2 cc volume. 2-Gy biologically equivalent doses (nBED) were calculated using an α/β = 2 Gy (units = Gy(2/2)). For the 2 cohorts, the nBED means and distributions were compared using the t test and Mann-Whitney test, respectively. Significance (P<.05) was defined as concordance of both tests at each specified volume. A logistic regression model was developed to estimate the probability of RM using the dose distribution for a given volume. RESULTS Significant differences in both the means and distributions at the Pmax and up to the 0.8-cc volume were observed. Concordant significance was greatest for the Pmax volume. At the Pmax volume the fit of the logistic regression model, summarized by the area under the curve, was 0.87. A risk of RM of 5% or less was observed when limiting the thecal sac Pmax volume doses to 12.4 Gy in a single fraction, 17.0 Gy in 2 fractions, 20.3 Gy in 3 fractions, 23.0 Gy in 4 fractions, and 25.3 Gy in 5 fractions. CONCLUSION We report the first logistic regression model yielding estimates for the probability of human RM specific to SBRT.

Collaboration


Dive into the Vivian Weinberg's collaboration.

Top Co-Authors

Avatar

Eric J. Small

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mack Roach

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jean Pouliot

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

M. Roach

University of California

View shared research outputs
Top Co-Authors

Avatar

Lawrence Fong

University of California

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge