Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Vjollca Konjufca is active.

Publication


Featured researches published by Vjollca Konjufca.


Nature | 2012

Goblet cells deliver luminal antigen to CD103 + dendritic cells in the small intestine

Jeremiah R. McDole; Leroy W. Wheeler; Keely G. McDonald; Baomei Wang; Vjollca Konjufca; Kathryn Knoop; Rodney D. Newberry; Mark J. Miller

The intestinal immune system is exposed to a mixture of foreign antigens from diet, commensal flora and potential pathogens. Understanding how pathogen-specific immunity is elicited while avoiding inappropriate responses to the background of innocuous antigens is essential for understanding and treating intestinal infections and inflammatory diseases. The ingestion of protein antigen can induce oral tolerance, which is mediated in part by a subset of intestinal dendritic cells (DCs) that promote the development of regulatory T cells. The lamina propria (LP) underlies the expansive single-cell absorptive villous epithelium and contains a large population of DCs (CD11c+ CD11b+ MHCII+ cells) comprised of two predominant subsets: CD103+ CX3CR1− DCs, which promote IgA production, imprint gut homing on lymphocytes and induce the development of regulatory T cells, and CD103− CX3CR1+ DCs (with features of macrophages), which promote tumour necrosis factor-α (TNF-α) production, colitis, and the development of TH17 T cells. However, the mechanisms by which different intestinal LP-DC subsets capture luminal antigens in vivo remains largely unexplored. Using a minimally disruptive in vivo imaging approach we show that in the steady state, small intestine goblet cells (GCs) function as passages delivering low molecular weight soluble antigens from the intestinal lumen to underlying CD103+ LP-DCs. The preferential delivery of antigens to DCs with tolerogenic properties implies a key role for this GC function in intestinal immune homeostasis.


Immunity | 2008

Bacterial Entry to the Splenic White Pulp Initiates Antigen Presentation to CD8+ T Cells

Taiki Aoshi; Bernd H. Zinselmeyer; Vjollca Konjufca; Jennifer N. Lynch; Xin Zhang; Yukio Koide; Mark J. Miller

The spleen plays an important role in host-protective responses to bacteria. However, the cellular dynamics that lead to pathogen-specific immunity remain poorly understood. Here we examined Listeria monocytogenes (Lm) infection in the mouse spleen via in situ fluorescence microscopy. We found that the redistribution of Lm from the marginal zone (MZ) to the periarteriolar lymphoid sheath (PALS) was inhibited by pertussis toxin and required the presence of CD11c(+) cells. As early as 9 hr after infection, we detected infected dendritic cells in the peripheral regions of the PALS and clustering of Lm-specific T cells by two-photon microscopy. Pertussis toxin inhibited both Lm entry into the PALS and antigen presentation to CD8(+) T cells. Our study suggests that splenic dendritic cells rapidly deliver intracellular bacteria to the T cell areas of the white pulp to initiate CD8(+) T cell responses.


Immunity | 2010

Mammalian Target of Rapamycin Controls Dendritic Cell Development Downstream of Flt3 Ligand Signaling

Taheri Sathaliyawala; William E. O'Gorman; Melanie Greter; Milena Bogunovic; Vjollca Konjufca; Z. Esther Hou; Garry P. Nolan; Mark J. Miller; Miriam Merad; Boris Reizis

Dendritic cells (DCs) comprise distinct functional subsets including CD8⁻ and CD8(+) classical DCs (cDCs) and interferon-secreting plasmacytoid DCs (pDCs). The cytokine Flt3 ligand (Flt3L) controls the development of DCs and is particularly important for the pDC and CD8(+) cDC and their CD103(+) tissue counterparts. We report that mammalian target of rapamycin (mTOR) inhibitor rapamycin impaired Flt3L-driven DC development in vitro, with the pDCs and CD8(+)-like cDCs most profoundly affected. Conversely, deletion of the phosphoinositide 3-kinase (PI3K)-mTOR negative regulator Pten facilitated Flt3L-driven DC development in culture. DC-specific Pten targeting in vivo caused the expansion of CD8(+) and CD103(+) cDC numbers, which was reversible by rapamycin. The increased CD8(+) cDC numbers caused by Pten deletion correlated with increased susceptibility to the intracellular pathogen Listeria. Thus, PI3K-mTOR signaling downstream of Flt3L controls DC development, and its restriction by Pten ensures optimal DC pool size and subset composition.


Infection and Immunity | 2006

A Recombinant Attenuated Salmonella enterica Serovar Typhimurium Vaccine Encoding Eimeria acervulina Antigen Offers Protection against E. acervulina Challenge

Vjollca Konjufca; Soo-Young Wanda; Mark C. Jenkins; Roy Curtiss

ABSTRACT Coccidiosis is a ubiquitous disease caused by intestinal protozoan parasites belonging to several distinct species of the genus Eimeria. Cell-mediated immunity (CMI) is critically important for protection against Eimeria; thus, our approach utilizes the bacterial type III secretion system (TTSS) to deliver an antigen directly into the cell cytoplasm of the immunized host and into the major histocompatibility complex class I antigen-processing pathway for induction of CMI and antigen-specific cytotoxic T-lymphocyte responses in particular. To accomplish this goal, Eimeria genes encoding the sporozoite antigen EASZ240 and the merozoite antigen EAMZ250 were fused to the Salmonella enterica serovar Typhimurium effector protein gene sptP in the parental pYA3653 vector, yielding pYA3657 and pYA3658, respectively. SptP protein is secreted by the TTSS of Salmonella and translocated into the cytoplasm of immunized host cells. The host strain chromosomal copy of the sptP gene was deleted and replaced by a reporter gene, xylE. The newly constructed vectors pYA3657 and pYA3658 were introduced into host strain χ8879 (ΔphoP233 ΔsptP1033::xylEΔ asdA16). This strain is an attenuated derivative of the highly virulent strain UK-1. When strain χ8879(pYA3653) as the vector control and strain χ8879 harboring pYA3657 or pYA3658 were used to orally immunize day-of-hatch chicks, colonization of the bursa, spleen, and liver was observed, with peak titers 6 to 9 days postimmunization. In vitro experiments show that the EASZ240 antigen is secreted into the culture supernatant via the TTSS and that it is delivered into the cytoplasm of Int-407 cells by the TTSS. In vivo experiments indicate that both humoral and cell-mediated immune responses are induced in chickens vaccinated with a recombinant attenuated Salmonella serovar Typhimurium vaccine, which leads to significant protection against Eimeria challenge.


PLOS ONE | 2008

SdiA, an N-acylhomoserine lactone receptor, becomes active during the transit of Salmonella enterica through the gastrointestinal tract of turtles

Jenee N. Smith; Jessica L. Dyszel; Jitesh A. Soares; Craig D. Ellermeier; Craig Altier; Sara D. Lawhon; L. Garry Adams; Vjollca Konjufca; Roy Curtiss; James M. Slauch; Brian M. M. Ahmer

Background LuxR-type transcription factors are typically used by bacteria to determine the population density of their own species by detecting N-acylhomoserine lactones (AHLs). However, while Escherichia and Salmonella encode a LuxR-type AHL receptor, SdiA, they cannot synthesize AHLs. In vitro, it is known that SdiA can detect AHLs produced by other bacterial species. Methodology/Principal Findings In this report, we tested the hypothesis that SdiA detects the AHL-production of other bacterial species within the animal host. SdiA did not detect AHLs during the transit of Salmonella through the gastrointestinal tract of a guinea pig, a rabbit, a cow, 5 mice, 6 pigs, or 12 chickens. However, SdiA was activated during the transit of Salmonella through turtles. All turtles examined were colonized by the AHL-producing species Aeromonas hydrophila. Conclusions/Significance We conclude that the normal gastrointestinal microbiota of most animal species do not produce AHLs of the correct type, in an appropriate location, or in sufficient quantities to activate SdiA. However, the results obtained with turtles represent the first demonstration of SdiA activity in animals.


European Journal of Immunology | 2009

The cellular niche of Listeria monocytogenes infection changes rapidly in the spleen

Taiki Aoshi; Javier A. Carrero; Vjollca Konjufca; Yukio Koide; Emil R. Unanue; Mark J. Miller

The spleen is an important organ for the host response to systemic bacterial infections. Many cell types and cell surface receptors have been shown to play role in the capture and control of bacteria, yet these are often studied individually and a coherent picture has yet to emerge of how various phagocytes collaborate to control bacterial infection. We analyzed the cellular distribution of Listeria monocytogenes (LM) in situ during the early phase of infection. Using an immunohistochemistry approach, five distinct phagocyte populations contained LM after i.v. challenge and accounted for roughly all bacterial signal in tissue sections. Our analysis showed that LM was initially captured by a wide range of phagocytes in the marginal zone, where the growth of LM appeared to be controlled. The cellular distribution of LM within phagocyte populations changed rapidly during the first few hours, decreasing in marginal zone macrophages and transiently increasing in CD11c+ DC. After 4–6 h LM was transported to the periarteriolar lymphoid sheath where the infective foci developed and LM grew exponentially.


PLOS ONE | 2014

The Uptake of Soluble and Particulate Antigens by Epithelial Cells in the Mouse Small Intestine

Savannah E. Howe; Duane J. Lickteig; Kyle N. Plunkett; Jan S. Ryerse; Vjollca Konjufca

Intestinal epithelial cells (IECs) overlying the villi play a prominent role in absorption of digested nutrients and establish a barrier that separates the internal milieu from potentially harmful microbial antigens. Several mechanisms by which antigens of dietary and microbial origin enter the body have been identified; however whether IECs play a role in antigen uptake is not known. Using in vivo imaging of the mouse small intestine, we investigated whether epithelial cells (enterocytes) play an active role in the uptake (sampling) of lumen antigens. We found that small molecular weight antigens such as chicken ovalbumin, dextran, and bacterial LPS enter the lamina propria, the loose connective tissue which lies beneath the epithelium via goblet cell associated passageways. However, epithelial cells overlying the villi can internalize particulate antigens such as bacterial cell debris and inert nanoparticles (NPs), which are then found co-localizing with the CD11c+ dendritic cells in the lamina propria. The extent of NP uptake by IECs depends on their size: 20–40 nm NPs are taken up readily, while NPs larger than 100 nm are taken up mainly by the epithelial cells overlying Peyers patches. Blocking NPs with small proteins or conjugating them with ovalbumin does not inhibit their uptake. However, the uptake of 40 nm NPs can be inhibited when they are administered with an endocytosis inhibitor (chlorpromazine). Delineating the mechanisms of antigen uptake in the gut is essential for understanding how tolerance and immunity to lumen antigens are generated, and for the development of mucosal vaccines and therapies.


Infection and Immunity | 2008

Immunogenicity of Recombinant Attenuated Salmonella enterica Serovar Typhimurium Vaccine Strains Carrying a Gene That Encodes Eimeria tenella Antigen SO7

Vjollca Konjufca; Mark C. Jenkins; Shifeng Wang; María Dolores Juárez-Rodríguez; Roy Curtiss

ABSTRACT Recombinant attenuated Salmonella vaccines against avian coccidiosis were developed to deliver Eimeria species antigens to the lymphoid tissues of chickens via the type 3 secretion system (T3SS) and the type 2 secretion system (T2SS) of Salmonella. For antigen delivery via the T3SS, the Eimeria tenella gene encoding sporozoite antigen SO7 was cloned downstream of the translocation domain of the Salmonella enterica serovar Typhimurium sopE gene in the parental pYA3868 and pYA3870 vectors to generate pYA4156 and pYA4157. Newly constructed T3SS vectors were introduced into host strain χ8879 (ΔphoP233 ΔsptP1033::xylE ΔasdA16), an attenuated derivative of the highly virulent UK-1 strain. The SopE-SO7 fusion protein was secreted by the T3SS of Salmonella. The vector pYA4184 was constructed for delivery of the SO7 antigen via the T2SS. The SO7 protein was toxic to Salmonella when larger amounts were synthesized; thus, the synthesis of this protein was placed under the control of the lacI repressor gene, whose expression in turn was dependent on the amount of available arabinose in the medium. The pYA4184 vector was introduced into host strain χ9242 (ΔphoP233 ΔasdA16 ΔaraBAD23 ΔrelA198::araC PBADlacI TT [TT is the T4ipIII transcription terminator]). In addition to SO7, for immunization and challenge studies we used the EAMZ250 antigen of Eimeria acervulina, which was previously shown to confer partial protection against E. acervulina challenge when it was delivered via the T3SS. Immunization of chickens with a combination of the SO7 and EAMZ250 antigens delivered via the T3SS induced superior protection against challenge by E. acervulina. In contrast, chickens immunized with SO7 that was delivered via the T2SS of Salmonella were better protected from challenge by E. tenella.


Cellular Microbiology | 2009

Two-photon microscopy of host-pathogen interactions: acquiring a dynamic picture of infection in vivo

Vjollca Konjufca; Mark J. Miller

Two‐photon (2P) microscopy has become increasingly popular among immunologists for analysing single‐cell dynamics in tissues. Researchers are now taking 2P microscopy beyond the study of model antigen systems (e.g. ovalbumin immunization) and are applying the technique to examine infection in vivo. With the appropriate fluorescent probes, 2P imaging can provide high‐resolution spatio‐temporal information regarding cell behaviour, monitor cell functions and assess various outcomes of infection, such as host cell apoptosis or pathogen proliferation. Imaging of transgenic and knockout mice can be used to probe molecular mechanisms governing the host response to infection. From the microbe side, imaging genetically engineered mutant strains of a pathogen can test the roles of specific virulence factors in pathogenesis. Here, we discuss recent work that has applied 2P microscopy to study models of infection and highlight the tremendous potential that this approach has for investigating host–pathogen interactions.


PLOS ONE | 2014

Protein-coated nanoparticles are internalized by the epithelial cells of the female reproductive tract and induce systemic and mucosal immune responses.

Savannah E. Howe; Vjollca Konjufca

The female reproductive tract (FRT) includes the oviducts (fallopian tubes), uterus, cervix and vagina. A layer of columnar epithelium separates the endocervix and uterus from the outside environment, while the vagina is lined with stratified squamous epithelium. The mucosa of the FRT is exposed to antigens originating from microflora, and occasionally from infectious microorganisms. Whether epithelial cells (ECs) of the FRT take up (sample) the lumen antigens is not known. To address this question, we examined the uptake of 20–40 nm nanoparticles (NPs) applied vaginally to mice which were not treated with hormones, epithelial disruptors, or adjuvants. We found that 20 and 40 nm NPs are quickly internalized by ECs of the upper FRT and within one hour could be observed in the lymphatic ducts that drain the FRT, as well as in the ileac lymph nodes (ILNs) and the mesenteric lymph nodes (MLNs). Chicken ovalbumin (Ova) conjugated to 20 nm NPs (NP-Ova) when administered vaginally reaches the internal milieu in an immunologically relevant form; thus vaginal immunization of mice with NP-Ova induces systemic IgG to Ova antigen. Most importantly, vaginal immunization primes the intestinal mucosa for secretion of sIgA. Sub-cutaneous (s.c) boosting immunization with Ova in complete Freunds adjuvant (CFA) further elevates the systemic (IgG1 and IgG2c) as well as mucosal (IgG1 and sIgA) antibody titers. These findings suggest that the modes of antigen uptake at mucosal surfaces and pathways of antigen transport are more complex than previously appreciated.

Collaboration


Dive into the Vjollca Konjufca's collaboration.

Top Co-Authors

Avatar

Mark J. Miller

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Savannah E. Howe

Southern Illinois University Carbondale

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mark C. Jenkins

United States Department of Agriculture

View shared research outputs
Top Co-Authors

Avatar

Roy Curtiss

Arizona State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Emil R. Unanue

Washington University in St. Louis

View shared research outputs
Researchain Logo
Decentralizing Knowledge