Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Vladan Vuletic is active.

Publication


Featured researches published by Vladan Vuletic.


Nature | 2012

Quantum Nonlinear Optics with Single Photons Enabled by Strongly Interacting Atoms

Thibault Peyronel; Ofer Firstenberg; Qiyu Liang; Sebastian Hofferberth; Alexey V. Gorshkov; Thomas Pohl; Mikhail D. Lukin; Vladan Vuletic

The realization of strong nonlinear interactions between individual light quanta (photons) is a long-standing goal in optical science and engineering, being of both fundamental and technological significance. In conventional optical materials, the nonlinearity at light powers corresponding to single photons is negligibly weak. Here we demonstrate a medium that is nonlinear at the level of individual quanta, exhibiting strong absorption of photon pairs while remaining transparent to single photons. The quantum nonlinearity is obtained by coherently coupling slowly propagating photons to strongly interacting atomic Rydberg states in a cold, dense atomic gas. Our approach paves the way for quantum-by-quantum control of light fields, including single-photon switching, all-optical deterministic quantum logic and the realization of strongly correlated many-body states of light.


Nature | 2014

Nanophotonic quantum phase switch with a single atom

Tobias Tiecke; Jeff Thompson; N. P. de Leon; Lee Liu; Vladan Vuletic; Mikhail D. Lukin

By analogy to transistors in classical electronic circuits, quantum optical switches are important elements of quantum circuits and quantum networks. Operated at the fundamental limit where a single quantum of light or matter controls another field or material system, such a switch may enable applications such as long-distance quantum communication, distributed quantum information processing and metrology, and the exploration of novel quantum states of matter. Here, by strongly coupling a photon to a single atom trapped in the near field of a nanoscale photonic crystal cavity, we realize a system in which a single atom switches the phase of a photon and a single photon modifies the atom’s phase. We experimentally demonstrate an atom-induced optical phase shift that is nonlinear at the two-photon level, a photon number router that separates individual photons and photon pairs into different output modes, and a single-photon switch in which a single ‘gate’ photon controls the propagation of a subsequent probe field. These techniques pave the way to integrated quantum nanophotonic networks involving multiple atomic nodes connected by guided light.


Science | 2013

Coupling a Single Trapped Atom to a Nanoscale Optical Cavity

Jeff Thompson; Tobias Tiecke; N. P. de Leon; Johannes Feist; A. V. Akimov; Michael Gullans; A. S. Zibrov; Vladan Vuletic; M. D. Lukin

Trapped and Coupled Trapped single atoms are ideal for storing and manipulating quantum information. Thompson et al. (p. 1202, published online 25 April; see the Perspective by Keller) were able to control single atoms interacting coherently with a field mode of a photonic crystal cavity. An optical tweezer was used to trap the single atom, which enabled positioning of the atom in close proximity to the photonic crystal waveguide, coupling the atom to the optical mode of the cavity. Such coupling should prove useful in quantum measurement, sensing, and information processing. A single rubidium atom is positioned in close proximity to an optical cavity so they can interact. [Also see Perspective by Keller] Hybrid quantum devices, in which dissimilar quantum systems are combined in order to attain qualities not available with either system alone, may enable far-reaching control in quantum measurement, sensing, and information processing. A paradigmatic example is trapped ultracold atoms, which offer excellent quantum coherent properties, coupled to nanoscale solid-state systems, which allow for strong interactions. We demonstrate a deterministic interface between a single trapped rubidium atom and a nanoscale photonic crystal cavity. Precise control over the atoms position allows us to probe the cavity near-field with a resolution below the diffraction limit and to observe large atom-photon coupling. This approach may enable the realization of integrated, strongly coupled quantum nano-optical circuits.


Science | 2013

All-Optical Switch and Transistor Gated by One Stored Photon

Wenlan Chen; Kristin Beck; Robert Bucker; Michael Gullans; Mikhail D. Lukin; Haruka Tanji-Suzuki; Vladan Vuletic

A Single-Photon Gate A long-standing goal in optics is to produce an all-optical transistor, in which the transmission of a light beam can be controlled by a single photon. Using a system in which a cloud of cesium atoms is coupled to an optical cavity, Chen et al. (p. 768, published online 4 July; see the Perspective by Volz and Rauschenbeutel) were able to control transmission through the optical cavity by exciting the atomic ensemble using a “gate” laser pulse. Just one gate photon stored was sufficient to detune the system and switch the transmission of source photons through the cavity. Optical transmission through a cesium-filled cavity can be controlled by a single stored photon. [Also see Perspective by Volz and Rauschenbeutel] The realization of an all-optical transistor, in which one “gate” photon controls a “source” light beam, is a long-standing goal in optics. By stopping a light pulse in an atomic ensemble contained inside an optical resonator, we realized a device in which one stored gate photon controls the resonator transmission of subsequently applied source photons. A weak gate pulse induces bimodal transmission distribution, corresponding to zero and one gate photons. One stored gate photon produces fivefold source attenuation and can be retrieved from the atomic ensemble after switching more than one source photon. Without retrieval, one stored gate photon can switch several hundred source photons. With improved storage and retrieval efficiency, our work may enable various new applications, including photonic quantum gates and deterministic multiphoton entanglement.


Physical Review Letters | 2010

Implementation of Cavity Squeezing of a Collective Atomic Spin

Ian D. Leroux; Monika Schleier-Smith; Vladan Vuletic

We squeeze unconditionally the collective spin of a dilute ensemble of laser-cooled 87Rb atoms using their interaction with a driven optical resonator. The shape and size of the resulting spin uncertainty region are well described by a simple analytical model [M. H. Schleier-Smith, I. D. Leroux, and V. Vuletić, arXiv:0911.3936 [Phys. Rev. A (to be published)]] through 2 orders of magnitude in the effective interaction strength, without free parameters. We deterministically generate states with up to 5.6(6) dB of metrologically relevant spin squeezing on the canonical 87Rb hyperfine clock transition.


Science | 2006

A High-Brightness Source of Narrowband, Identical-Photon Pairs

James K. Thompson; Jonathan Simon; Huanqian Loh; Vladan Vuletic

We generated narrowband pairs of nearly identical photons at a rate of 5 × 104 pairs per second from a laser-cooled atomic ensemble inside an optical cavity. A two-photon interference experiment demonstrated that the photons could be made 90% indistinguishable, a key requirement for quantum information-processing protocols. Used as a conditional single-photon source, the system operated near the fundamental limits on recovery efficiency (57%), Fourier transform–limited bandwidth, and pair-generation-rate–limited suppression of two-photon events (factor of 33 below the Poisson limit). Each photon had a spectral width of 1.1 megahertz, ideal for interacting with atomic ensembles that form the basis of proposed quantum memories and logic.


Physical Review Letters | 2007

Interfacing Collective Atomic Excitations and Single Photons

Jonathan Simon; Haruka Tanji; James K. Thompson; Vladan Vuletic

We study the performance and limitations of a coherent interface between collective atomic states and single photons. A quantized spin-wave excitation of an atomic sample inside an optical resonator is prepared probabilistically, stored, and adiabatically converted on demand into a sub-Poissonian photonic excitation of the resonator mode. The measured peak single-quantum conversion efficiency of chi=0.84(11) and its dependence on various parameters are well described by a simple model of the mode geometry and multilevel atomic structure, pointing the way towards implementing high-performance stationary single-photon sources.


Physical Review Letters | 2009

Trapping and Manipulation of Isolated Atoms Using Nanoscale Plasmonic Structures

Darrick E. Chang; Jeff Thompson; Hongkun Park; Vladan Vuletic; A. S. Zibrov; P. Zoller; Mikhail D. Lukin

We propose and analyze a scheme to interface individual neutral atoms with nanoscale solid-state systems. The interface is enabled by optically trapping the atom via the strong near-field generated by a sharp metallic nanotip. We show that under realistic conditions, a neutral atom can be trapped with position uncertainties of just a few nanometers, and within tens of nanometers of other surfaces. Simultaneously, the guided surface plasmon modes of the nanotip allow the atom to be optically manipulated, or for fluorescence photons to be collected, with very high efficiency. Finally, we analyze the surface forces, heating and decoherence rates acting on the trapped atom.


Science | 2016

Atom-by-atom assembly of defect-free one-dimensional cold atom arrays

Manuel Endres; Hannes Bernien; Alexander Keesling; Harry Levine; Eric R. Anschuetz; Alexandre Krajenbrink; Crystal Senko; Vladan Vuletic; Markus Greiner; Mikhail D. Lukin

Making perfect atomic arrays Arrays of atoms can be a useful resource for quantum information. However, loading atoms into arrays is typically a stochastic process, which leads to imperfections. Two groups have now performed defect-free assembly of atoms into arrays (see the Perspective by Regal). The researchers first loaded the atoms stochastically and imaged the system. They then shuttled the atoms around to form perfect arrays. Barredo et al. worked with two-dimensional arrays, creating a variety of spatial configurations. Endres et al. manipulated atoms along a line. By further cooling down the atoms and generating interactions among them, the techniques may also find use in quantum simulation. Science, this issue p. 972, p. 1021; see also p. 1024 Real-time control of 100 optical tweezers leads to perfect one-dimensional arrays of more than 50 atoms of rubidium-87. The realization of large-scale fully controllable quantum systems is an exciting frontier in modern physical science. We use atom-by-atom assembly to implement a platform for the deterministic preparation of regular one-dimensional arrays of individually controlled cold atoms. In our approach, a measurement and feedback procedure eliminates the entropy associated with probabilistic trap occupation and results in defect-free arrays of more than 50 atoms in less than 400 milliseconds. The technique is based on fast, real-time control of 100 optical tweezers, which we use to arrange atoms in desired geometric patterns and to maintain these configurations by replacing lost atoms with surplus atoms from a reservoir. This bottom-up approach may enable controlled engineering of scalable many-body systems for quantum information processing, quantum simulations, and precision measurements.


Physical Review Letters | 2010

Orientation-Dependent Entanglement Lifetime in a Squeezed Atomic Clock

Ian D. Leroux; Monika Schleier-Smith; Vladan Vuletic

We study experimentally the application of a class of entangled states, squeezed spin states, to the improvement of atomic-clock precision. In the presence of anisotropic noise, the entanglement lifetime is strongly dependent on squeezing orientation. We measure the Allan deviation spectrum of a clock operated with a phase-squeezed input state. For averaging times up to 50xa0s the squeezed clock achieves a given precision 2.8(3)xa0times faster than a clock operating at the standard quantum limit.

Collaboration


Dive into the Vladan Vuletic's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Monika Schleier-Smith

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Ian D. Leroux

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Thibault Peyronel

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Qiyu Liang

Massachusetts Institute of Technology

View shared research outputs
Researchain Logo
Decentralizing Knowledge