Vladimir Churilov
Australian Astronomical Observatory
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Vladimir Churilov.
Proceedings of SPIE | 2006
Rob Sharp; Will Saunders; Greg Smith; Vladimir Churilov; David Correll; J. M. Dawson; Tony Farrel; Gabriella Frost; Roger Haynes; Ron Heald; Allan Lankshear; Lew Waller; Dennis Whittard
AAOmega is the new spectrograph for the 2dF fibre-positioning system on the Anglo-Australian Telescope. It is a bench-mounted, double-beamed design, using volume phase holographic (VPH) gratings and articulating cameras. It is fed by 392 fibres from either of the two 2dF field plates, or by the 512 fibre SPIRAL integral field unit (IFU) at Cassegrain focus. Wavelength coverage is 370 to 950nm and spectral resolution 1,000-8,000 in multi-Object mode, or 1,500-10,000 in IFU mode. Multi-object mode was commissioned in January 2006 and the IFU system will be commissioned in June 2006. The spectrograph is located off the telescope in a thermally isolated room and the 2dF fibres have been replaced by new 38m broadband fibres. Despite the increased fibre length, we have achieved a large increase in throughput by use of VPH gratings, more efficient coatings and new detectors - amounting to a factor of at least 2 in the red. The number of spectral resolution elements and the maximum resolution are both more than doubled, and the stability is an order of magnitude better. The spectrograph comprises: an f/3.15 Schmidt collimator, incorporating a dichroic beam-splitter; interchangeable VPH gratings; and articulating red and blue f/1.3 Schmidt cameras. Pupil size is 190mm, determined by the competing demands of cost, obstruction losses, and maximum resolution. A full suite of VPH gratings has been provided to cover resolutions 1,000 to 7,500, and up to 10,000 at particular wavelengths.
Proceedings of SPIE | 2004
Will Saunders; Terry J. Bridges; Peter Gillingham; Roger Haynes; Greg Smith; John D. Whittard; Vladimir Churilov; Allan Lankshear; Scott M. Croom; Damien Jones; Christopher R. Boshuizen
AAOmega is a new spectrograph for the existing 2dF and SPIRAL multifibre systems on the Ango-Australian Telescope. It is a bench-mounted, dual-beamed, articulating, all-Schmidt design, using volume phase holographic gratings. The wavelength range is 370-950nm, with spectral resolutions from 1400-10000. Throughput, spectral coverage, and maximum resolution are all more than doubled compared with the existing 2dF spectrographs, and stability is increased by orders of magnitude. These features allow entirely new classes of observation to be undertaken, as well as dramatically improving existing ones. AAOmega is scheduled for delivery and commissioning in Semester 2005B.
Proceedings of SPIE | 2004
C. G. Tinney; Stuart D. Ryder; Simon C. Ellis; Vladimir Churilov; J. M. Dawson; Greg Smith; Lew Waller; John D. Whittard; Roger Haynes; Allan Lankshear; John R. Barton; Carol Evans; Keith Shortridge; Tony Farrell; Jeremy Bailey
IRIS2 is a near-infrared imager and spectrograph based on a HAWAII1 HgCdTe detector. It provides wide-field (7.7’×7.7’) imaging capabilities at 0.4486”/pixel sampling, long-slit spectroscopy at λ/Δλ≈2400 in each of the J, H and K passbands, and the ability to do multi-object spectroscopy in up to three masks. These multi-slit masks are laser cut, and have been manufactured for both traditional multiple slit work (≈20-40 objects in a 3’×7.4’ field-of-view), multiple slit work in narrow-band filters (≈100 objects in a 5’×7.4’ field-of-view), and micro-hole spectroscopy in narrow-band filters allowing the observation of ≈200 objects in a 5’×7.4’ field.
Proceedings of SPIE | 2004
Greg Smith; Will Saunders; Terry J. Bridges; Vladimir Churilov; Allan Lankshear; J. M. Dawson; David Correll; Lew Waller; Roger Haynes; Gabriella Frost
The AAOmega project replaces the two 2dF spectrographs, which are mounted on the top end of the Anglo Australian Telescope, with a bench mounted double beam spectrograph covering 370 to 950nm. The 2dF positioner, field plate tumbler mechanism, and fiber retractors will be retained. The new spectrograph will be fed by 392 fibers from either of the two 2dF field plates, or by the 512 fiber Spiral integral field unit, located at the Cassegrain focus. New instrument control electronics has also been designed to drive the spectrograph. Stability will be improved by locating the spectrograph off the telescope, but the 2df fibers must be extended to thirty-eight metres length. Despite this, using fibers with improved characteristics, increased pupil diameter, volume phase holographic (VPH) gratings with articulated cameras, and more efficient coatings on optics we achieve a minimum twofold increase in throughput. We will also fit larger (4k x 2k pixel) detectors. The spectrograph comprises: a F/3.15 Schmidt collimator, incorporating a dichroic beamsplitter; interchangeable VPH gratings; and articulating red and blue F/1.3 Schmidt cameras. The beamsplitter may be exchanged with others which cut off at different wavelengths. A full suite of VPH gratings are provided to cover resolution to 8000.
Proceedings of SPIE | 2010
Samuelk C. Barden; Damien Jones; Stuart I. Barnes; Jeroen Heijmans; Anthony Heng; Greg Knight; David Orr; Greg Smith; Vladimir Churilov; Jurek Brzeski; Lewis Waller; Keith Shortridge; Anthony Horton; Roger Haynes; Dionne M. Haynes; Denis Whittard; Michael Goodwin; Scott Smedley; Ian Saunders; Peter Gillingham; Ed Penny; Tony Farrell; Minh Vuong; Ron Heald; Steve Lee; Rolf Müller; Kenneth C. Freeman; Joss Bland-Hawthorn; Daniel F. Zucker; Gayandhi De Silva
The AAO is building an optical high resolution multi-object spectrograph for the AAT for Galactic Archaeology. The instrument has undergone significant design revision over that presented at the 2008 Marseilles SPIE meeting. The current design is a 4-channel VPH-grating based spectrograph providing a nominal spectral resolving power of 28,000 and a high-resolution mode of 45,000 with the use of a slit mask. The total spectral coverage is about 1000 Angstroms for up to 392 simultaneous targets within the 2 degree field of view. Major challenges in the design include the mechanical stability, grating and dichroic efficiencies, and fibre slit relay implementation. An overview of the current design and discussion of these challenges is presented.
Journal of Astronomical Telescopes, Instruments, and Systems | 2015
Andrew Sheinis; Borja Anguiano Jimenez; Martin Asplund; Carlos Bacigalupo; Samuel C. Barden; Michael N. Birchall; Joss Bland-Hawthorn; Jurek Brzeski; Russell D. Cannon; Daniela Carollo; Scott W. Case; Andrew R. Casey; Vladimir Churilov; Warrick J. Couch; Robert Dean; Gayandhi De Silva; V. D’Orazi; Ly Duong; Tony Farrell; Kristin Fiegert; Kenneth C. Freeman; Gabriella Frost; Luke Gers; Michael Goodwin; Doug Gray; Andrew W. Green; Ron Heald; Jeroen Heijmans; Michael J. Ireland; Damien Jones
Abstract. The High Efficiency and Resolution Multi Element Spectrograph, HERMES, is a facility-class optical spectrograph for the Anglo-Australian Telescope (AAT). It is designed primarily for Galactic Archaeology, the first major attempt to create a detailed understanding of galaxy formation and evolution by studying the history of our own galaxy, the Milky Way. The goal of the GALAH survey is to reconstruct the mass assembly history of the Milky Way through a detailed chemical abundance study of one million stars. The spectrograph is based at the AAT and is fed by the existing 2dF robotic fiber positioning system. The spectrograph uses volume phase holographic gratings to achieve a spectral resolving power of 28,000 in standard mode and also provides a high-resolution mode ranging between 40,000 and 50,000 using a slit mask. The GALAH survey requires an SNR greater than 100 for a star brightness of V=14 in an exposure time of one hour. The total spectral coverage of the four channels is about 100 nm between 370 and 1000 nm for up to 392 simultaneous targets within the 2-degree field of view. HERMES has been commissioned over three runs, during bright time in October, November, and December 2013, in parallel with the beginning of the GALAH pilot survey, which started in November 2013. We present the first-light results from the commissioning run and the beginning of the GALAH survey, including performance results such as throughput and resolution, as well as instrument reliability.
Proceedings of SPIE | 2008
Samuel C. Barden; J. Bland-Hawthorn; Vladimir Churilov; Simon C. Ellis; Tony Farrell; Kenneth C. Freeman; Roger Haynes; Anthony Horton; Damien Jones; Greg Knight; Stan Miziarski; William Rambold; Greg Smith; Lew Waller
Mapping out stellar families to trace the evolutionary star formation history of the Milky Way requires a spectroscopic facility able to deliver high spectral resolution (R≥30k) with both good wavelength coverage (~400 Ang) and target multiplex advantage (~400 per 2 degree field). Such a facility can survey 1,200,000 bright stars over 10,000 square degrees in about 400 nights with a 4-meter aperture telescope. Presented are the results of a conceptual design study for such a spectrograph, which is under development as the next major instrument for the Anglo-Australian Observatory. The current design (that builds upon the AAOmega system) makes use of a White Pupil collimator and an R3 echelle that is matched to the existing AAOmega cameras. The fibre slit can be reconfigured to illuminate the Pupil relay side of the collimator mirror bypassing the echelle, thus preserving the lower dispersion modes of the AAOmega spectrograph. Other spectrograph options initially considered include use of an anamorphic collimator that reduces the required dispersion to that achievable with VPH grating technology or possible use of a double-pass VPH grating.
Proceedings of SPIE | 2012
Jeroen Heijmans; Martin Asplund; Sam Barden; Michael N. Birchall; Daniela Carollo; Joss Bland-Hawthorn; Jurek Brzeski; Scott W. Case; Vladimir Churilov; Matthew Colless; Robert Dean; Gayandhi De Silva; Tony Farrell; Kristin Fiegert; Kenneth C. Freeman; Luke Gers; Michael Goodwin; Doug Gray; Ron Heald; Anthony Heng; Damien Jones; Chiaki Kobayashi; Urs Klauser; Yuriy Kondrat; Jon Lawrence; Steve Lee; Darren Mathews; Stan Miziarski; Guy Monnet; Rolf Müller
The High Efficiency and Resolution Multi Element Spectrograph, HERMES is an optical spectrograph designed primarily for the GALAH, Galactic Archeology Survey, the first major attempt to create a detailed understanding of galaxy formation and evolution by studying the history of our own galaxy, the Milky Way1. The goal of the GALAH survey is to reconstruct the mass assembly history of the of the Milky way, through a detailed spatially tagged abundance study of one million stars in the Milky Way. The spectrograph will be based at the Anglo Australian Telescope (AAT) and be fed with the existing 2dF robotic fibre positioning system. The spectrograph uses VPH-gratings to achieve a spectral resolving power of 28,000 in standard mode and also provides a high resolution mode ranging between 40,000 to 50,000 using a slit mask. The GALAH survey requires a SNR greater than 100 aiming for a star brightness of V=14. The total spectral coverage of the four channels is about 100nm between 370 and 1000nm for up to 392 simultaneous targets within the 2 degree field of view. Current efforts are focused on manufacturing and integration. The delivery date of spectrograph at the telescope is scheduled for 2013. A performance prediction is presented and a complete overview of the status of the HERMES spectrograph is given. This paper details the following specific topics: The approach to AIT, the manufacturing and integration of the large mechanical frame, the opto-mechanical slit assembly, collimator optics and cameras, VPH gratings, cryostats, fibre cable assembly, instrument control hardware and software, data reduction.
Proceedings of SPIE | 2016
Jonathan Lawrence; Sagi Ben-Ami; David M. Brown; Rebecca Brown; Scott W. Case; Steve Chapman; Vladimir Churilov; Matthew Colless; D. L. DePoy; Ian Evans; Tony Farrell; Michael Goodwin; George H. Jacoby; Urs Klauser; K. Kuehn; Nuria P. F. Lorente; Slavko Mali; J. L. Marshall; Rolf Müller; Vijay Nichani; Naveen Pai; Travis Prochaska; Will Saunders; Luke M. Schmidt; Keith Shortridge; Nicholas F. Staszak; Andrew Szentgyorgyi; Julia Tims; Minh Vuong; Lewis Waller
MANIFEST is a facility multi-object fibre system for the Giant Magellan Telescope, which uses ‘Starbug’ fibre positioning robots. MANIFEST, when coupled to the telescope’s planned seeing-limited instruments, GMACS, and G-CLEF, offers access to: larger fields of view; higher multiplex gains; versatile reformatting of the focal plane via IFUs; image-slicers; and in some cases higher spatial and spectral resolution. The Prototyping Design Study phase for MANIFEST, nearing completion, has focused on developing a working prototype of a Starbugs system, called TAIPAN, for the UK Schmidt Telescope, which will conduct a stellar and galaxy survey of the Southern sky. The Prototyping Design Study has also included work on the GMT instrument interfaces. In this paper, we outline the instrument design features of TAIPAN, highlight the modifications that will be necessary for the MANIFEST implementation, and provide an update on the MANIFEST/instrument interfaces.
Proceedings of SPIE | 2014
Michael J. Ireland; Andre Anthony; Greg Burley; Eric M. Chisholm; Vladimir Churilov; Jennifer Dunn; Gabriella Frost; Jon Lawrence; David Loop; Peter J. McGregor; Sarah L. Martell; Alan W. McConnachie; Richard M. McDermid; John Pazder; Vlad Reshetov; J. G. Robertson; Andrew Sheinis; Julia Tims; Peter C. Young; Ross Zhelem
The Gemini High-Resolution Optical SpecTrograph (GHOST) is the newest instrument being developed for the Gemini telescopes, in a collaboration between the Australian Astronomical Observatory (AAO), the NRC - Herzberg in Canada and the Australian National University (ANU). We describe the process of design optimisation that utilizes the unique strengths of the new partner, NRC - Herzberg, the design and need for the slit viewing camera system, and we describe a simplification for the lenslet-based slit reformatting. Finally, we out- line the updated project plan, and describe the unique scientific role this instrument will have in an international context, from exoplanets through to the distant Universe.