Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Vladimir F. Lyalka is active.

Publication


Featured researches published by Vladimir F. Lyalka.


Behavioural Brain Research | 2008

Postural performance in decerebrated rabbit

Pavel Musienko; Pavel V. Zelenin; Vladimir F. Lyalka; G. N. Orlovsky; T. G. Deliagina

It is known that animals decerebrated at the premammillary level are capable of standing and walking without losing balance, in contrast to postmammillary ones which do not exhibit such behavior. The main goals of the present study were, first, to characterize the postural performance in premammillary rabbits, and, second, to activate the postural system in postmammillary ones by brainstem stimulation. For evaluation of postural capacity of decerebrated rabbits, motor and EMG responses to lateral tilts of the supporting platform and to lateral pushes were recorded before and after decerebration. In addition, the righting behavior (i.e., standing up from the lying position) was video recorded. We found that, in premammillary rabbits, responses to lateral tilts and pushes were similar to those observed in intact ones, but the magnitude of responses was reduced. During righting, premammillary rabbits assumed the normal position slower than intact ones. To activate the postural system in postmammillary rabbits, we stimulated electrically two brainstem structures, the mesencephalic locomotor region (MLR) and the ventral tegmental field (VTF). The MLR stimulation (prior to elicitation of locomotion) and the VTF stimulation caused an increase of the tone of hindlimb extensors, and enhanced their responses to lateral tilts and to pushes. These results indicate that the basic mechanisms for maintenance of body posture and equilibrium during standing are present in decerebrated animals. They are active in the premammillary rabbits but need to be activated in the postmammillary ones.


The Journal of Neuroscience | 2012

Spinal and Supraspinal Control of the Direction of Stepping during Locomotion

Pavel Musienko; Pavel V. Zelenin; Vladimir F. Lyalka; Yury Gerasimenko; Grigory N. Orlovsky; Tatiana G. Deliagina

Most bipeds and quadrupeds, in addition to forward walking, are also capable of backward and sideward walking. The direction of walking is determined by the direction of stepping movements of individual limbs in relation to the front-to-rear body axis. Our goal was to assess the functional organization of the system controlling the direction of stepping. Experiments were performed on decerebrate cats walking on the treadmill with their hindlimbs, whereas the head and trunk were rigidly fixed. Different directions of the treadmill motion relative to the body axis were used (0, ±45, ±90, and 180°). For each direction, we compared locomotion evoked from the brainstem (by stimulation of the mesencephalic locomotor region, MLR) with locomotion evoked by epidural stimulation of the spinal cord (SC). It was found that SC stimulation evoked well coordinated stepping movements at different treadmill directions. The direction of steps was opposite to the treadmill motion, suggesting that this direction was determined by sensory input from the limb during stance. Thus, SC stimulation activates limb controllers, which are able to generate stepping movements in different directions. By contrast, MLR stimulation evoked well coordinated stepping movements only if the treadmill was moving in the front-to-rear direction. One can conclude that supraspinal commands (caused by MLR stimulation) select one of the numerous forms of operation of the spinal limb controllers, namely, the forward walking. The MLR can thus be considered as a command center for forward locomotion, which is the main form of progression in bipeds and quadrupeds.


Journal of Neurophysiology | 2009

Impairment of postural control in rabbits with extensive spinal lesions.

Vladimir F. Lyalka; G. N. Orlovsky; T. G. Deliagina

Our previous studies on rabbits demonstrated that the ventral spinal pathways are of primary importance for postural control in the hindquarters. After ventral hemisection, postural control did not recover, whereas after dorsal or lateral hemisection it did. The aim of this study was to examine postural capacity of rabbits after more extensive lesion (3/4 section of the spinal cord at T(12) level), that is, with only one ventral quadrant spared (VQ animals). They were tested before (control) and after lesion on the platform periodically tilted in the frontal plane. In control animals, tilts of the platform regularly elicited coordinated electromyographic (EMG) responses in the hindlimbs, which resulted in generation of postural corrections and in maintenance of balance. In VQ rabbits, the EMG responses appeared only in a part of tilt cycles, and they could be either correctly or incorrectly phased in relation to tilts. Because of a reduced value and incorrect phasing of EMG responses on both sides, this muscle activity did not cause postural corrective movements in the majority of rabbits, and the body swayed together with the platform. In these rabbits, the ability to perform postural corrections did not recover during the whole period of observation (< or =30 days). Low probability of correct EMG responses to tilts in most rabbits as well as an appearance of incorrect responses to tilts suggest that the spinal reflex chains, necessary for postural control, have not been specifically selected by a reduced supraspinal drive transmitted via a single ventral quadrant.


Journal of Neurophysiology | 2008

Effect of Intrathecal Administration of Serotoninergic and Noradrenergic Drugs on Postural Performance in Rabbits With Spinal Cord Lesions

Vladimir F. Lyalka; Pavel Musienko; G. N. Orlovsky; Sten Grillner; T. G. Deliagina

Our previous studies have shown that extensive spinal lesions at T12 in the rabbit [ventral hemisection (VHS) or 3/4-section that spares one ventral quadrant (VQ)] severely damaged the postural system. When tested on the platform periodically tilted in the frontal plane, VHS and VQ animals typically were not able to perform postural corrective movements by their hindlimbs, although EMG responses (correctly or incorrectly phased) could be observed. We attempted to restore postural control in VHS and VQ rabbits by applying serotoninergic and noradrenergic drugs to the spinal cord below the lesion through the intrathecal cannula. It was found that serotonin and quipazine (5-HT1,2,3 agonist) did not re-establish postural corrective movements. However, when applied during a 10-day period after lesion, these drugs produced a twofold increase of the proportion of correct EMG responses to tilts. It was also found that methoxamine (alpha1 noradrenergic agonist), as well as the mixture of methoxamine and quipazine, did not re-establish postural corrective movements and did not increase the proportion of correct EMG responses. Serotonin (at later stages) and methoxamine induced periodical bursting in EMGs, suggesting activation of spinal rhythm-generating networks. Appearance of bursting seems to perturb normal operation of postural mechanisms, as suggested by methoxamine-induced abolishment of postural effects of quipazine. When applied in an intact animal, none of the tested drugs affected the value of postural corrections or evoked periodical bursting. We conclude that activation of the serotoninergic system (but not the noradrenergic one) causes selective enhancement of spinal postural reflexes during the earlier postlesion period.


Journal of Neurophysiology | 2011

Facilitation of postural limb reflexes in spinal rabbits by serotonergic agonist administration, epidural electrical stimulation, and postural training

Vladimir F. Lyalka; Li-Ju Hsu; A. Karayannidou; Pavel V. Zelenin; G. N. Orlovsky; T. G. Deliagina

In quadrupeds, spinalization in the thoracic region severely impairs postural control in the hindquarters. The goal of this study was to improve postural functions in chronic spinal rabbits by regular application of different factors: intrathecal injection of the 5-HT(2) agonist (±)-1-(2,5-dimethoxy-4-iodophenyl)-2-aminopropane hydrochloride (DOI), epidural electrical spinal cord stimulation (EES), and specific postural training (SPT). The factors were used either alone (SPT group) or in combination (DOI+SPT, EES+SPT, and DOI+EES+SPT groups) or not used (control group). It was found that in none of these groups did normal postural corrective movements in response to lateral tilts of the supporting platform reappear within the month of treatment. In control group, reduced irregular electromyographic (EMG) responses, either correctly or incorrectly phased in relation to tilts, were observed. By contrast, in DOI+SPT and EES+SPT groups, a gradual threefold increase in the proportion of correctly phased EMG responses (compared with control) was observed. The increase was smaller in DOI+EES+SPT and SPT groups. Dissimilarly to these long-term effects, short-term effects of DOI and EES were weak or absent. In addition, gradual development of oscillatory EMG activity in the responses to tilts, characteristic for the control group, was retarded in DOI+SPT, EES+SPT, DOI+EES+SPT, and SPT groups. Thus regular application of the three tested factors and their combinations caused progressive, long-lasting plastic changes in the isolated spinal networks, resulting in the facilitation of spinal postural reflexes and in the retardation of the development of oscillatory EMG activity. The facilitated reflexes, however, were insufficient for normal postural functions.


The Journal of Neuroscience | 2013

Effects of reversible spinalization on individual spinal neurons.

Pavel V. Zelenin; Vladimir F. Lyalka; Li-Ju Hsu; G. N. Orlovsky; Tatiana G. Deliagina

Postural limb reflexes (PLRs) represent a substantial component of the postural system responsible for stabilization of dorsal-side-up trunk orientation in quadrupeds. Spinalization causes spinal shock, that is a dramatic reduction of extensor tone and spinal reflexes, including PLRs. The goal of our study was to determine changes in activity of spinal interneurons, in particular those mediating PLRs, that is caused by spinalization. For this purpose, in decerebrate rabbits, activity of individual interneurons from L5 was recorded during stimulation causing PLRs under two conditions: (1) when neurons received supraspinal influences and (2) when these influences were temporarily abolished by a cold block of spike propagation in spinal pathways at T12 (“reversible spinalization”; RS). The effect of RS, that is a dramatic reduction of PLRs, was similar to the effect of surgical spinalization. In the examined population of interneurons (n = 199), activity of 84% of them correlated with PLRs, suggesting that they contribute to PLR generation. RS affected differently individual neurons: the mean frequency decreased in 67% of neurons, increased in 15%, and did not change in 18%. Neurons with different RS effects were differently distributed across the spinal cord: 80% of inactivated neurons were located in the intermediate area and ventral horn, whereas 50% of nonaffected neurons were located in the dorsal horn. We found a group of neurons that were coactivated with extensors during PLRs before RS and exhibited a dramatic (>80%) decrease in their activity during RS. We suggest that these neurons are responsible for reduction of extensor tone and postural reflexes during spinal shock.


Neuroscience | 2017

Neural mechanisms of single corrective steps evoked in the standing rabbit

Li-Ju Hsu; Pavel V. Zelenin; Vladimir F. Lyalka; M.G. Vemula; G. N. Orlovsky; T. G. Deliagina

Single steps in different directions are often used for postural corrections. However, our knowledge about the neural mechanisms underlying their generation is scarce. This study was aimed to characterize the corrective steps generated in response to disturbances of the basic body configuration caused by forward, backward or outward displacement of the hindlimb, as well as to reveal location in the CNS of the corrective step generating mechanisms. Video recording of the motor response to translation of the supporting surface under the hindlimb along with contact forces and activity of back and limb muscles was performed in freely standing intact and in fixed postmammillary rabbits. In intact rabbits, displacement of the hindlimb in any direction caused a lateral trunk movement toward the contralateral hindlimb, and then a corrective step in the direction opposite to the initial displacement. The time difference between onsets of these two events varied considerably. The EMG pattern in the supporting hindlimb was similar for all directions of corrective steps. It caused the increase in the limb stiffness. EMG pattern in the stepping limb differed in steps with different directions. In postmammillary rabbits the corrective stepping movements, as well as EMG patterns in both stepping and standing hindlimbs were similar to those observed in intact rabbits. This study demonstrates that the corrective trunk and limb movements are generated by separate mechanisms activated by sensory signals from the deviated limb. The neuronal networks generating postural corrective steps reside in the brainstem, cerebellum, and spinal cord.


European Journal of Neuroscience | 2015

Putative spinal interneurons mediating postural limb reflexes provide a basis for postural control in different planes

Pavel V. Zelenin; Li-Ju Hsu; Vladimir F. Lyalka; G. N. Orlovsky; Tatiana G. Deliagina

The dorsal‐side‐up trunk orientation in standing quadrupeds is maintained by the postural system driven mainly by somatosensory inputs from the limbs. Postural limb reflexes (PLRs) represent a substantial component of this system. Earlier we described spinal neurons presumably contributing to the generation of PLRs. The first aim of the present study was to reveal trends in the distribution of neurons with different parameters of PLR‐related activity across the gray matter of the spinal cord. The second aim was to estimate the contribution of PLR‐related neurons with different patterns of convergence of sensory inputs from the limbs to stabilization of body orientation in different planes. For this purpose, the head and vertebral column of the decerebrate rabbit were fixed and the hindlimbs were positioned on a platform. Activity of individual neurons from L5 to L6 was recorded during PLRs evoked by lateral tilts of the platform. In addition, the neurons were tested by tilts of the platform under only the ipsilateral or only the contralateral limb, as well as during in‐phase tilts of the platforms under both limbs. We found that, across the spinal gray matter, strength of PLR‐related neuronal activity and sensory input from the ipsilateral limb decreased in the dorsoventral direction, while strength of the input from the contralateral limb increased. A near linear summation of tilt‐related sensory inputs from different limbs was found. Functional roles were proposed for individual neurons. The obtained data present the first characterization of posture‐related spinal neurons, forming a basis for studies of postural networks impaired by injury.


Scientific Reports | 2016

Effects of acute spinalization on neurons of postural networks

Pavel V. Zelenin; Vladimir F. Lyalka; Li-Ju Hsu; G. N. Orlovsky; T. G. Deliagina

Postural limb reflexes (PLRs) represent a substantial component of postural corrections. Spinalization results in loss of postural functions, including disappearance of PLRs. The aim of the present study was to characterize the effects of acute spinalization on two populations of spinal neurons (F and E) mediating PLRs, which we characterized previously. For this purpose, in decerebrate rabbits spinalized at T12, responses of interneurons from L5 to stimulation causing PLRs before spinalization, were recorded. The results were compared to control data obtained in our previous study. We found that spinalization affected the distribution of F- and E-neurons across the spinal grey matter, caused a significant decrease in their activity, as well as disturbances in processing of posture-related sensory inputs. A two-fold decrease in the proportion of F-neurons in the intermediate grey matter was observed. Location of populations of F- and E-neurons exhibiting significant decrease in their activity was determined. A dramatic decrease of the efficacy of sensory input from the ipsilateral limb to F-neurons, and from the contralateral limb to E-neurons was found. These changes in operation of postural networks underlie the loss of postural control after spinalization, and represent a starting point for the development of spasticity.


Neuroscience | 2016

Effect of acute lateral hemisection of the spinal cord on spinal neurons of postural networks.

Pavel V. Zelenin; Vladimir F. Lyalka; G. N. Orlovsky; T. G. Deliagina

In quadrupeds, acute lateral hemisection of the spinal cord (LHS) severely impairs postural functions, which recover over time. Postural limb reflexes (PLRs) represent a substantial component of postural corrections in intact animals. The aim of the present study was to characterize the effects of acute LHS on two populations of spinal neurons (F and E) mediating PLRs. For this purpose, in decerebrate rabbits, responses of individual neurons from L5 to stimulation causing PLRs were recorded before and during reversible LHS (caused by temporal cold block of signal transmission in lateral spinal pathways at L1), as well as after acute surgical LHS at L1. Results obtained after Sur-LHS were compared to control data obtained in our previous study. We found that acute LHS caused disappearance of PLRs on the affected side. It also changed a proportion of different types of neurons on that side. A significant decrease and increase in the proportion of F- and non-modulated neurons, respectively, was found. LHS caused a significant decrease in most parameters of activity in F-neurons located in the ventral horn on the lesioned side and in E-neurons of the dorsal horn on both sides. These changes were caused by a significant decrease in the efficacy of posture-related sensory input from the ipsilateral limb to F-neurons, and from the contralateral limb to both F- and E-neurons. These distortions in operation of postural networks underlie the impairment of postural control after acute LHS, and represent a starting point for the subsequent recovery of postural functions.

Collaboration


Dive into the Vladimir F. Lyalka's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Li-Ju Hsu

Karolinska Institutet

View shared research outputs
Top Co-Authors

Avatar

Pavel Musienko

Saint Petersburg State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yury Gerasimenko

California Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

A. Karayannidou

Barrow Neurological Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge