Vladimir Grosbois
Centre national de la recherche scientifique
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Vladimir Grosbois.
Biological Reviews | 2008
Vladimir Grosbois; Olivier Gimenez; Roger Pradel; Christophe Barbraud; Jean Clobert; Anders Pape Møller; Henri Weimerskirch
The impact of the ongoing rapid climate change on natural systems is a major issue for human societies. An important challenge for ecologists is to identify the climatic factors that drive temporal variation in demographic parameters, and, ultimately, the dynamics of natural populations. The analysis of long‐term monitoring data at the individual scale is often the only available approach to estimate reliably demographic parameters of vertebrate populations. We review statistical procedures used in these analyses to study links between climatic factors and survival variation in vertebrate populations.
Journal of Chemical Ecology | 2007
Francesco Bonadonna; Eve Miguel; Vladimir Grosbois; Pierre Jouventin; Jean-Marie Bessière
A growing body of evidence indicates that odors are used in individual, sexual, and species recognition in vertebrates, and may be reliable signals of quality and compatibility. Petrels are seabirds that exhibit an acute sense of smell. During the breeding period, many species of petrel live in dense colonies on small oceanic islands and form pairs that use individual underground burrows. Mates alternate between parental duties and foraging trips at sea. Returning from the ocean at night (to avoid bird predators), petrels must find their nest burrow. Antarctic prions, Pachyptila desolata, are thought to identify their nest by recognizing their partner’s odor, suggesting the existence of an individual odor signature. We used gas chromatography and mass spectrometry to analyze extracts obtained from the feathers of 13 birds. The chemical profile of a single bird was more similar to itself, from year to year, than to that of any other bird. The profile contained up to a hundred volatile lipids, but the odor signature may be based on the presence or absence of a few specific compounds. Our results show that the odor signature in Antarctic prions is probably endogenous, suggesting that in some species of petrels it may broadcast compatibility and quality of potential mates.
Modeling demographic processes in marked populations | 2009
Olivier Gimenez; Simon J. Bonner; Ruth King; Richard A. Parker; Stephen P. Brooks; Lara E. Jamieson; Vladimir Grosbois; Byron J. T. Morgan; Len Thomas
The computer package WinBUGS is introduced. We first give a brief introduction to Bayesian theory and its implementation using Markov chain Monte Carlo (MCMC) algorithms. We then present three case studies showing how WinBUGS can be used when classical theory is difficult to implement. The first example uses data on white storks from Baden Wurttemberg, Germany, to demonstrate the use of mark-recapture models to estimate survival, and also how to cope with unexplained variance through random effects. Recent advances in methodology and also the WinBUGS software allow us to introduce (i) a flexible way of incorporating covariates using spline smoothing and (ii) a method to deal with missing values in covariates. The second example shows how to estimate population density while accounting for detectability, using distance sampling methods applied to a test dataset collected on a known population of wooden stakes. Finally, the third case study involves the use of state-space models of wildlife population dynamics to make inferences about density dependence in a North American duck species. Reversible Jump MCMC is used to calculate the probability of various candidate models. For all examples, data and WinBUGS code are provided.
Ecology | 2003
Vladimir Grosbois; Giacomo Tavecchia
Increasing habitat fragmentation has led population ecologists to consider dispersal as a key process for population functioning and persistence. However, due to logistic and methodological problems, dispersal rates within fragmented populations have rarely been estimated, leaving many unanswered questions about the role of dispersal and the factors affecting dispersal. Recently developed multistrata capture–recapture models allow the estimation of dispersal probabilities from the analysis of recaptures or recoveries of marked individuals. Despite their undoubted efficiency at estimating dispersal rates, their contribution to the investigation of dispersal processes at the individual level is presently limited by a lack of flexibility in their parameterization. In this paper, a new parameterization of these models is presented in which the probability of leaving the site of origin and the probability that an emigrant settles on a given recipient site are modeled separately. This parameterization is then used to address the influence of local perturbations on site fidelity and settlement decisions of emigrants in a subdivided population of Black-headed Gulls, Larus ridibundus. The parameterization introduced here accurately describes dispersal probabilities whenever they result from a two-step decision-making process (i.e., when choice of a settlement site only occurs after a decision has been made to leave the current site). Furthermore, this parameterization permits investigators to disentangle hypotheses about these two components of dispersal behavior. Corresponding Editor: P. Legendre.
Transboundary and Emerging Diseases | 2011
Stéphanie Desvaux; Vladimir Grosbois; T.T.H. Pham; Stan Fenwick; Sébastien Tollis; N.H. Pham; Annelise Tran; François Roger
A case-control study at both village and farm levels was designed to investigate risk factors for highly pathogenic avian influenza H5N1 during the 2007 outbreaks in one province of Northern Vietnam. Data related to human and natural environments, and poultry production systems were collected for 19 case and 38 unmatched control villages and 19 pairs of matched farms. Our results confirmed the role of poultry movements and trading activities. In particular, our models found that higher number of broiler flocks in the village increased the risk (OR = 1.49, 95% CI: 1.12-1.96), as well as the village having at least one poultry trader (OR = 11.53, 95% CI: 1.34-98.86). To a lesser extent, in one of our two models, we also identified that increased density of ponds and streams, commonly used for waterfowl production, and greater number of duck flocks in the village also increased the risk. The higher percentage of households keeping poultry, as an indicator of households keeping backyard poultry in our study population, was a protective factor (OR = 0.95, 95% CI: 0.91-0.98). At the farm level, three risk factors at the 5% level of type I error were identified by univariate analysis: a greater total number of birds (P = 0.006), increase in the number of flocks having access to water (P = 0.027) and a greater number of broiler flocks in the farm (P = 0.049). Effect of vaccination implementation (date and doses) was difficult to investigate because of a poor recording system. Some protective or risk factors with limited effect may not have been identified owing to our limited sample size. Nevertheless, our results provide a better understanding of local transmission mechanisms of HPAI H5N1 in one province of the Red River Delta region in Vietnam and highlight the need to reduce at-risk trading and production practices.
Journal of Biosciences | 2008
Bruno Di Giusto; Vladimir Grosbois; Élodie Fargeas; David J. Marshall; Laurence Gaume
Mechanisms that improve prey richness in carnivorous plants may involve three crucial phases of trapping: attraction, capture and retention. Nepenthes rafflesiana var. typica is an insectivorous pitcher plant that is widespread in northern Borneo. It exhibits ontogenetic pitcher dimorphism with the upper pitchers trapping more flying prey than the lower pitchers. While this difference in prey composition has been ascribed to differences in attraction, the contribution of capture and retention has been overlooked. This study focused on distinguishing between the prey trapping mechanisms, and assessing their relative contribution to prey diversity. Arthropod richness and diversity of both visitors and prey in the two types of pitchers were analysed to quantify the relative contribution of attraction to prey trapping. Rate of insect visits to the different pitcher parts and the presence or absence of a sweet fragrance was recorded to clarify the origin and mechanism of attraction. The mechanism of retention was studied by insect bioassays and measurements of fluid viscosity. Nepenthes rafflesiana was found to trap a broader prey spectrum than that previously described for any Nepenthes species, with the upper pitchers attracting and trapping a greater quantity and diversity of prey items than the lower pitchers. Capture efficiency was low compared with attraction or retention efficiency. Fragrance of the peristome, or nectar rim, accounted mainly for the observed non-specific, better prey attraction by the upper pitchers, while the retentive properties of the viscous fluid in these upper pitchers arguably explains the species richness of their flying prey. The pitchers of N. rafflesiana are therefore more than simple pitfall traps and the digestive fluid plays an important yet unsuspected role in the ecological success of the species.
Ecosphere | 2013
Eve Miguel; Vladimir Grosbois; Alexandre Caron; Thierry Boulinier; Hervé Fritz; Daniel Cornélis; Chris Foggin; Pious V. Makaya; Priscillia T. Tshabalala; Michel De Garine-Wichatitsky
Wildlife is a maintenance host for several significant livestock diseases. Interspecific pathogen transmission may occur in complex socio-ecological systems at wild-domestic interfaces that have so far been seldom studied. We investigated the relationship between the dynamics of foot and mouth disease (FMD) in vaccinated and unvaccinated cattle populations with respect to frequency of contacts with African buffalo at different buffalo-cattle interfaces. A total of 36 GPS collars were deployed on African buffalo (Syncerus caffer) and cattle (Bos taurus, Bos indicus) to assess contact patterns at the periphery of 3 protected areas in Zimbabwe. Simultaneously, a longitudinal survey of 300 cattle with five repeated sampling sessions on known individuals during 16 months was undertaken. Immunological assays (ELISAs), that allowed tracking the production of antibodies following infection or vaccination, were used to assess serological transitions (i.e., incidence and reversion) in the surveyed cattle. Variation in rates of serological transitions across seasons, sites and as a function of the frequency of contact with buffalo was analyzed using generalized linear mixed models. The incidence in the cattle populations of FMD antibodies produced following infection varied among sites and as a function of contact rates with African buffalo. The incidence was higher for sites with higher contact rates between the two species. The serological incidence was also related to seasons, being higher during the dry or rainy seasons depending on sites. The reversion rate pattern was the opposite of this incidence rate pattern. Vaccination seemed partly efficient at the individual level, but it did not prevent the diffusion of FMD viruses from the wild reservoir host to the domestic cattle population. Furthermore, antibodies were detected in areas where cattle had not been vaccinated, suggesting that the virus may have spread without being detected in domestic populations. Access to resources shared by buffalo and livestock, particularly water and grazing areas during the dry season, could partly explain the observed patterns of FMD transmission. We discuss how insights on ecological processes leading to wildlife-livestock contacts may provide some innovative solutions to improve FMD management, including surveillance, prevention or control of buffalo-borne outbreaks, by adopting strategies targeting risky areas and periods.
Oecologia | 2005
Laurence Gaume; Merry Zacharias; Vladimir Grosbois; Renee M. Borges
The fitness advantage provided by caulinary domatia to myrmecophytes has never been directly demonstrated because most myrmecophytic species do not present any individual variation in the presence of domatia and the removal of domatia from entire plants is a destructive process. The semi-myrmecophytic tree, Humboldtia brunonis (Fabaceae: Caesalpinioideae), is an ideal species to investigate the selective advantage conferred by domatia because within the same population, some plants are devoid of domatia while others bear them. Several ant species patrol the plant for extra-floral nectar. Fruit production was found to be enhanced in domatia-bearing trees compared to trees devoid of domatia independent of the ant associate. However, this domatium effect was most conspicuous for trees associated with the populous and nomadic ant, Technomyrmex albipes. This species is a frequent associate of H. brunonis, inhabiting its domatia or building carton nests on it. Ant exclusion experiments revealed that T. albipes was the only ant to provide efficient anti-herbivore protection to the leaves of its host tree. Measures of ant activity as well as experiments using caterpillars revealed that the higher efficiency of T. albipes was due to its greater patrolling density and consequent shorter lag time in attacking the larvae. T. albipes also provided efficient anti-herbivore protection to flowers since fruit initiation was greater on ant-patrolled inflorescences than on those from which ants were excluded. We therefore demonstrated that caulinary domatia provide a selective advantage to their host-plant and that biotic defence is potentially the main fitness benefit mediated by domatia. However, it is not the sole advantage. The general positive effect of domatia on fruit set in this ant–plant could reflect other benefits conferred by domatia-inhabitants, which are not restricted to ants in this myrmecophyte, but comprise a large diversity of other invertebrates. Our results indicate that mutualisms enhance the evolution of myrmecophytism.
Ecology | 2009
Vladimir Grosbois; Michael P. Harris; Tycho Anker-Nilssen; Robin H. McCleery; Deryk Shaw; Byron J. T. Morgan; Olivier Gimenez
The demography of vertebrate populations is governed in part by processes operating at large spatial scales that have synchronizing effects on demographic parameters over large geographic areas, and in part, by local processes that generate fluctuations that are independent across populations. We describe a statistical model for the analysis of individual monitoring data at the multi-population scale that allows us to (1) split up temporal variation in survival into two components that account for these two types of processes and (2) evaluate the role of environmental factors in generating these two components. We derive from this model an index of synchrony among populations in the pattern of temporal variation in survival, and we evaluate the extent to which environmental factors contribute to synchronize or desynchronize survival variation among populations. When applied to individual monitoring data from four colonies of the Atlantic Puffin (Fratercula arctica), 67% of between-year variance in adult survival was accounted for by a global spatial-scale component, indicating substantial synchrony among colonies. Local sea surface temperature (SST) accounted for 40% of the global spatial-scale component but also for an equally large fraction of the local-scale component. SST thus acted at the same time as both a synchronizing and a desynchronizing agent. Between-year variation in adult survival not explained by the effect of local SST was as synchronized as total between-year variation, suggesting that other unknown environmental factors acted as synchronizing agents. Our approach, which focuses on demographic mechanisms at the multi-population scale, ideally should be combined with investigations of population size time series in order to characterize thoroughly the processes that underlie patterns of multi-population dynamics and, ultimately, range dynamics.
Epidemiology and Infection | 2010
Getachew Gari; Agnès Waret-Szkuta; Vladimir Grosbois; P. Jacquiet; François Roger
A cross-sectional study based on a questionnaire survey was conducted to determine the distribution of lumpy skin disease (LSD) and associated risk factors in three main agro-climatic zones of Ethiopia. A total of 330 questionnaire surveys were collected from 44 peasant associations (PA) distributed in 15 districts. Across agro-climate zones, herd-level LSD prevalence in the midland agro-climate was significantly higher 55.2% [95% confidence interval (CI) 47.5-62.6] than in highland and lowland agro-climate zones. Overall observed LSD prevalence at animal-level was 8.1% (95% CI 7.3-8.9) and observed mortality was 2.12% (95% CI 1.73-2.6). The odds ratio (OR) of LSD occurrence in midland vs. highland and lowland vs. highland zones was 3.86 (95% CI 2.61-5.11) and 4.85 (95% CI 2.59-7.1), respectively. Significantly high risk of LSD occurrence was associated with communal grazing and watering management (OR 4.1, 95% CI 2.02-6.18) and introduction of new cattle (OR 8.5, 95% CI 6.0-11.0). Our findings describe the distribution of LSD in different agro-climates in Ethiopia along with associated risk factors, and can help shed light on the epidemiology of LSD in other African countries suffering from the disease.
Collaboration
Dive into the Vladimir Grosbois's collaboration.
Centre de coopération internationale en recherche agronomique pour le développement
View shared research outputsCentre de coopération internationale en recherche agronomique pour le développement
View shared research outputsCentre de coopération internationale en recherche agronomique pour le développement
View shared research outputs