Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Vladimir I. Bashkirov is active.

Publication


Featured researches published by Vladimir I. Bashkirov.


Molecular and Cellular Biology | 2000

DNA Repair Protein Rad55 Is a Terminal Substrate of the DNA Damage Checkpoints

Vladimir I. Bashkirov; Jeff S. King; Elena V. Bashkirova; Jacqueline Schmuckli-Maurer; Wolf Dietrich Heyer

ABSTRACT Checkpoints, which are integral to the cellular response to DNA damage, coordinate transient cell cycle arrest and the induced expression of DNA repair genes after genotoxic stress. DNA repair ensures cellular survival and genomic stability, utilizing a multipathway network. Here we report evidence that the two systems, DNA damage checkpoint control and DNA repair, are directly connected by demonstrating that the Rad55 double-strand break repair protein of the recombinational repair pathway is a terminal substrate of DNA damage and replication block checkpoints. Rad55p was specifically phosphorylated in response to DNA damage induced by the alkylating agent methyl methanesulfonate, dependent on an active DNA damage checkpoint. Rad55p modification was also observed after gamma ray and UV radiation. The rapid time course of phosphorylation and the recombination defects identified in checkpoint-deficient cells are consistent with a role of the DNA damage checkpoint in activating recombinational repair. Rad55p phosphorylation possibly affects the balance between different competing DNA repair pathways.


Molecular and Cellular Biology | 2003

Direct kinase-to-kinase signaling mediated by the FHA phosphoprotein recognition domain of the Dun1 DNA damage checkpoint kinase.

Vladimir I. Bashkirov; Elena V. Bashkirova; Edwin Haghnazari; Wolf Dietrich Heyer

ABSTRACT The serine-threonine kinase Dun1 contains a forkhead-associated (FHA) domain and functions in the DNA damage checkpoint pathway of Saccharomyces cerevisiae. It belongs to the Chk2 family of checkpoint kinases, which includes S. cerevisiae Rad53 and Mek1, Schizosaccharomyces pombe Cds1, and human Chk2. Dun1 is required for DNA damage-induced transcription of certain target genes, transient G2/M arrest after DNA damage, and DNA damage-induced phosphorylation of the DNA repair protein Rad55. Here we report that the FHA phosphoprotein recognition domain of Dun1 is required for direct phosphorylation of Dun1 by Rad53 kinase in vitro and in vivo. trans phosphorylation by Rad53 does not require the Dun1 kinase activity and is likely to involve only a transient interaction between the two kinases. The checkpoint functions of Dun1 kinase in DNA damage-induced transcription, G2/M cell cycle arrest, and Rad55 phosphorylation are severely compromised in an FHA domain mutant of Dun1. As a consequence, the Dun1 FHA domain mutant displays enhanced sensitivity to genotoxic stress induced by UV, methyl methanesulfonate, and the replication inhibitor hydroxyurea. We show that the Dun1 FHA domain is critical for direct kinase-to-kinase signaling from Rad53 to Dun1 in the DNA damage checkpoint pathway.


Molecular and Cellular Biology | 2006

Phosphorylation of Rad55 on Serines 2, 8, and 14 Is Required for Efficient Homologous Recombination in the Recovery of Stalled Replication Forks

Kristina Herzberg; Vladimir I. Bashkirov; Michael Rolfsmeier; Edwin Haghnazari; W. Hayes McDonald; Scott Anderson; Elena V. Bashkirova; John R. Yates; Wolf Dietrich Heyer

ABSTRACT DNA damage checkpoints coordinate the cellular response to genotoxic stress and arrest the cell cycle in response to DNA damage and replication fork stalling. Homologous recombination is a ubiquitous pathway for the repair of DNA double-stranded breaks and other checkpoint-inducing lesions. Moreover, homologous recombination is involved in postreplicative tolerance of DNA damage and the recovery of DNA replication after replication fork stalling. Here, we show that the phosphorylation on serines 2, 8, and 14 (S2,8,14) of the Rad55 protein is specifically required for survival as well as for normal growth under genome-wide genotoxic stress. Rad55 is a Rad51 paralog in Saccharomyces cerevisiae and functions in the assembly of the Rad51 filament, a central intermediate in recombinational DNA repair. Phosphorylation-defective rad55-S2,8,14A mutants display a very slow traversal of S phase under DNA-damaging conditions, which is likely due to the slower recovery of stalled replication forks or the slower repair of replication-associated DNA damage. These results suggest that Rad55-S2,8,14 phosphorylation activates recombinational repair, allowing for faster recovery after genotoxic stress.


The EMBO Journal | 1995

A role of Sep1 (= Kem1, Xrn1) as a microtubule-associated protein in Saccharomyces cerevisiae.

Heidrun Interthal; C Bellocq; Jürg Bähler; Vladimir I. Bashkirov; S Edelstein; Wolf Dietrich Heyer

Saccharomyces cerevisiae cells lacking the SEP1 (also known as XRN1, KEM1, DST2, RAR5) gene function exhibit a number of phenotypes in cellular processes related to microtubule function. Mutant cells show increased sensitivity to the microtubule‐destabilizing drug benomyl, increased chromosome loss, a karyogamy defect, impaired spindle pole body separation, and defective nuclear migration towards the bud neck. Analysis of the arrest morphology and of the survival during arrest strongly suggests a structural defect accounting for the benomyl hypersensitivity, rather than a regulatory defect in a checkpoint. Biochemical analysis of the purified Sep1 protein demonstrates its ability to promote the polymerization of procine brain and authentic S.cerevisiae tubulin into flexible microtubules in vitro. Furthermore, Sep1 co‐sediments with these microtubules in sucrose cushion centrifugation. Genetic analysis of double mutant strains containing a mutation in SEP1 and in one of the genes coding for alpha‐ or beta‐tubulin further suggests interaction between Sep1 and microtubules. Taken together these three lines of evidence constitute compelling evidence for a role of Sep1 as an accessory protein in microtubule function in the yeast S.cerevisiae.


DNA Repair | 2003

Amino acid changes in Xrs2p, Dun1p, and Rfa2p that remove the preferred targets of the ATM family of protein kinases do not affect DNA repair or telomere length in Saccharomyces cerevisiae

Julia C. Mallory; Vladimir I. Bashkirov; Kelly M. Trujillo; Jachen A. Solinger; Margaret Dominska; Patrick Sung; Wolf Dietrich Heyer; Thomas D. Petes

In eukaryotes, mutations in a number of genes that affect DNA damage checkpoints or DNA replication also affect telomere length [Curr. Opin. Cell Biol. 13 (2001) 281]. Saccharomyces cerevisae strains with mutations in the TEL1 gene (encoding an ATM-like protein kinase) have very short telomeres, as do strains with mutations in XRS2, RAD50, or MRE11 (encoding members of a trimeric complex). Xrs2p and Mre11p are phosphorylated in a Tel1p-dependent manner in response to DNA damage [Genes Dev. 15 (2001) 2238; Mol. Cell 7 (2001) 1255]. We found that Xrs2p, but not Mre11p or Rad50p, is efficiently phosphorylated in vitro by immunopreciptated Tel1p. Strains with mutations eliminating all SQ and TQ motifs in Xrs2p (preferred targets of the ATM kinase family) had wild-type length telomeres and wild-type sensitivity to DNA damaging agents. We also showed that Rfa2p (a subunit of RPA) and the Dun1p checkpoint kinase, which are required for DNA damage repair and which are phosphorylated in response to DNA damage in vivo, are in vitro substrates of the Tel1p and Mec1p kinases. In addition, Dun1p substrates with no SQ or TQ motifs are phosphorylated by Mec1p in vitro very inefficiently, but retain most of their ability to be phosphorylated by Tel1p. We demonstrated that null alleles of DUN1 and certain mutant alleles of RFA2 result in short telomeres. As observed with Xrs2p, however, strains with mutations of DUN1 or RFA2 that eliminate SQ motifs have no effect on telomere length or DNA damage sensitivity.


FEBS Journal | 2006

Constitutive expression of the human peroxiredoxin V gene contributes to protection of the genome from oxidative DNA lesions and to suppression of transcription of noncoding DNA

Andrey Kropotov; Vladimir Serikov; Jung H. Suh; A. N. Smirnova; Vladimir I. Bashkirov; Boris Zhivotovsky; Nikolai Tomilin

Peroxiredoxins belong to a family of antioxidant proteins that neutralize reactive oxygen species. One member of this family, peroxiredoxin I (PRDX1), suppresses DNA oxidation. Peroxiredoxin V (PRDX5) has been cloned as a transcriptional corepressor, as a peroxisomal/mitochondrial antioxidant protein, and as an inhibitor of p53‐dependent apoptosis. Promoters of mammalian PRDX5 genes contain clusters of antioxidant response elements, which can bind the transcription factor NRF2. However, we found that expression of the human PRDX5 gene in situ was not stimulated by the oxidative agent menadione. Silencing of the NRF2 gene in the absence of oxidative stress by specific siRNA did not decrease PRDX5 protein concentration. We also constructed clones of human lung epithelial cells A549 with siRNA‐mediated knockdown of the PRDX5 gene. This led to a significant increase in 8‐oxoguanine formation in cell DNA. In the PRDX5 knockdown clone, an increase in transcripts containing sequences of alpha‐satellite and satellite III DNAs was also detected, suggesting that this protein may be required for silencing of heterochromatin. Together, these results suggest that constitutively expressed PRDX5 gene plays an important role in protecting the genome against oxidation and may also be involved in the control of transcription of noncoding DNA.


Chromosoma | 1995

Identification of functional domains in the Sep1 protein (= Kem1, Xrn1), which is required for transition through meiotic prophase in Saccharomyces cerevisiae.

Vladimir I. Bashkirov; Jachen A. Solinger; Wolf Dietrich Heyer

The Sep1 (also known as Kem1, Xrn1, Rar5, DST2/Stpβ) protein of Saccharomyces cerevisiae is an Mr 175,000 multifunctional exonuclease with suspected roles in RNA turnover and in the microtubular cytoskeleton as well as in DNA recombination and DNA replication. The most striking phenotype of SEP1 null mutations is quantitative arrest during meiotic prophase at the pachytene stage. We have constructed a set of N- and C-terminal as well as internal deletions of the large SEP1 gene. Analysis of these deletion mutations on plasmids in a host carrying a null allele (sep1Δ) revealed that at least 270 amino acids from the C-terminus of the wildtype protein were dispensable for complementing the slow growth and benomyl hypersensitivity of a null mutant. In contrast, any deletion at the N-terminus abrogated complementing activity for these phenotypes. The sequences essential for function correspond remarkably well with the regions of Sep1 that are homologous to its Schizosaccharomyces pombe counterpart Exo2. In addition, these experiments showed that, despite the high intracellular levels of Sep1, over-expression of this protein above these levels is detrimental to the cell. We discuss the potential cellular roles of the Sep1 protein as a microtubule-nucleic acid interface protein linking its suspected function in the microtubular cytoskeleton with its role as a nucleic acid binding protein.


Molecular Genetics and Genomics | 1987

Illegitimate recombination in Bacillus subtilis: nucleotide sequences at recombinant DNA junctions.

Vladimir I. Bashkirov; Fuat K. Khasanov; A. A. Prozorov

SummaryThe illegitimate integration of plasmid pGG20 (the hybrid between Staphylococcus aureus plasmid pE194 and Escherichia coli plasmid pBR322) into the Bacillus subtilis chromosome was studied. It was found that nucleotide sequences of both parental plasmids could be involved in this process. The recombinant DNA junctions between plasmid pGG20 and the chromosome were cloned and their nucleotide sequences were determined. The site of recombination located on the pBR322 moiety carried a short region (8 bp) homologous with the site on the chromosome. The nucleotide sequences of the pE194 recombination sites did not share homology with chromosomal sequences involved in the integration process. Two different pathways of illegitimate recombination in B. subtilis are suggested.


Nucleic Acids Research | 2010

A truncated DNA-damage-signaling response is activated after DSB formation in the G1 phase of Saccharomyces cerevisiae

Ryan Janke; Kristina Herzberg; Michael Rolfsmeier; Jordan Mar; Vladimir I. Bashkirov; Edwin Haghnazari; Greg T. Cantin; John R. Yates; Wolf Dietrich Heyer

In Saccharomyces cerevisiae, the DNA damage response (DDR) is activated by the spatio-temporal colocalization of Mec1-Ddc2 kinase and the 9-1-1 clamp. In the absence of direct means to monitor Mec1 kinase activation in vivo, activation of the checkpoint kinase Rad53 has been taken as a proxy for DDR activation. Here, we identify serine 378 of the Rad55 recombination protein as a direct target site of Mec1. Rad55-S378 phosphorylation leads to an electrophoretic mobility shift of the protein and acts as a sentinel for Mec1 activation in vivo. A single double-stranded break (DSB) in G1-arrested cells causes phosphorylation of Rad55-S378, indicating activation of Mec1 kinase. However, Rad53 kinase is not detectably activated under these conditions. This response required Mec1-Ddc2 and loading of the 9-1-1 clamp by Rad24-RFC, but not Rad9 or Mrc1. In addition to Rad55–S378, two additional direct Mec1 kinase targets are phosphorylated, the middle subunit of the ssDNA-binding protein RPA, RPA2 and histone H2A (H2AX). These data suggest the existence of a truncated signaling pathway in response to a single DSB in G1-arrested cells that activates Mec1 without eliciting a full DDR involving the entire signaling pathway including the effector kinases.


Methods in Enzymology | 2006

DNA damage-induced phosphorylation of Rad55 protein as a sentinel for DNA damage checkpoint activation in S. cerevisiae.

Vladimir I. Bashkirov; Kristina Herzberg; Edwin Haghnazari; Alexey S. Vlasenko; Wolf Dietrich Heyer

Rad55 protein is one of two Rad51 paralogs in the budding yeast Saccharomyces cerevisiae and forms a stable heterodimer with Rad57, the other Rad51 paralog. The Rad55-Rad57 heterodimer functions in homologous recombination during the assembly of the Rad51-ssDNA filament, which is central for homology search and DNA strand exchange. Previously, we identified Rad55 protein as a terminal target of the DNA damage checkpoints, which coordinate the cellular response to genotoxic stress. Rad55 protein phosphorylation is signaled by a significant electrophoretic shift and occurs in response to a wide range of genotoxic stress. Here, we map the phosphorylation site leading to the electrophoretic shift and show that Rad55 protein is a bona fide direct in vivo substrate of the central DNA damage checkpoint kinase Mec1, the budding yeast equivalent of human ATM/ATR. We provide protocols to monitor the Rad55 phosphorylation status in vivo and assay Rad55-Rad57 phosphorylation in vitro using purified substrate with the Mec1 and Rad53 checkpoint kinases.

Collaboration


Dive into the Vladimir I. Bashkirov's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

A. A. Prozorov

Russian Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

John R. Yates

Scripps Research Institute

View shared research outputs
Top Co-Authors

Avatar

Michael Rolfsmeier

Washington State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge