Volkan Coskun
University of California, Los Angeles
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Volkan Coskun.
Science | 2010
Hao Wu; Volkan Coskun; Jifang Tao; Wei Xie; Weihong Ge; Kazuaki Yoshikawa; En Li; Yi Zhang; Yi E. Sun
Location, Location, Location The genome receives epigenetic marks throughout development that regulate the activity of multiple genes. One such mark is methylation, which usually represses gene transcription. Methylation has generally been studied in the promoters of genes, where many regulatory signals coordinate to control the expression of the gene. Studying neural stem cells from mice, Wu et al. (p. 444) now show that DNA methylation can be a double-edged sword. Although methylation of DNA sequences in promoters tends to be repressive, methylation of DNA sequences beyond the promoters can actually promote gene expression. Analysis of the methyltransferase Dnmt3a in mouse neural stem cells revealed that methylations around neurogenic genes—but outside their promoters—maintained the activity of these genes. DNA methylation is normally repressive but can activate genes when the methylated sites lie outside promoter regions. DNA methylation at proximal promoters facilitates lineage restriction by silencing cell type–specific genes. However, euchromatic DNA methylation frequently occurs in regions outside promoters. The functions of such nonproximal promoter DNA methylation are unclear. Here we show that the de novo DNA methyltransferase Dnmt3a is expressed in postnatal neural stem cells (NSCs) and is required for neurogenesis. Genome-wide analysis of postnatal NSCs indicates that Dnmt3a occupies and methylates intergenic regions and gene bodies flanking proximal promoters of a large cohort of transcriptionally permissive genes, many of which encode regulators of neurogenesis. Surprisingly, Dnmt3a-dependent nonproximal promoter methylation promotes expression of these neurogenic genes by functionally antagonizing Polycomb repression. Thus, nonpromoter DNA methylation by Dnmt3a may be used for maintaining active chromatin states of genes critical for development.
Nature Neuroscience | 2005
Fei He; Weihong Ge; Keri Martinowich; Sara G. Becker-Catania; Volkan Coskun; Wenyu Zhu; Hao Wu; Diogo S. Castro; François Guillemot; Guoping Fan; Jean de Vellis; Yi E. Sun
During development of the CNS, neurons and glia are generated in a sequential manner. The mechanism underlying the later onset of gliogenesis is poorly understood, although the cytokine-induced Jak-STAT pathway has been postulated to regulate astrogliogenesis. Here, we report that the overall activity of Jak-STAT signaling is dynamically regulated in mouse cortical germinal zone during development. As such, activated STAT1/3 and STAT-mediated transcription are negligible at early, neurogenic stages, when neurogenic factors are highly expressed. At later, gliogenic periods, decreased expression of neurogenic factors causes robust elevation of STAT activity. Our data demonstrate a positive autoregulatory loop whereby STAT1/3 directly induces the expression of various components of the Jak-STAT pathway to strengthen STAT signaling and trigger astrogliogenesis. Forced activation of Jak-STAT signaling leads to precocious astrogliogenesis, and inhibition of this pathway blocks astrocyte differentiation. These observations suggest that autoregulation of the Jak-STAT pathway controls the onset of astrogliogenesis.
Proceedings of the National Academy of Sciences of the United States of America | 2008
Volkan Coskun; Hao Wu; Bruno Blanchi; Sean Tsao; Kevin Kim; Jing Zhao; Juan Carlos Biancotti; Leah Hutnick; Richard C. Krueger; Guoping Fan; Jean de Vellis; Yi E. Sun
The postnatal forebrain subventricular zone (SVZ) harbors stem cells that give rise to olfactory bulb interneurons throughout life. The identity of stem cells in the adult SVZ has been extensively debated. Although, ependymal cells were once suggested to have stem cell characteristics, subsequent studies have challenged the initial report and postulated that subependymal GFAP+ cells were the stem cells. Here, we report that, in the adult mouse forebrain, immunoreactivity for a neural stem cell marker, prominin-1/CD133, is exclusively localized to the ependyma, although not all ependymal cells are CD133+. Using transplantation and genetic lineage tracing approaches, we demonstrate that CD133+ ependymal cells continuously produce new neurons destined to olfactory bulb. Collectively, our data indicate that, compared with GFAP expressing adult neural stem cells, CD133+ ependymal cells represent an additional—perhaps more quiescent—stem cell population in the mammalian forebrain.
Proceedings of the National Academy of Sciences of the United States of America | 2006
Weihong Ge; Fei He; Kevin Kim; Bruno Blanchi; Volkan Coskun; Laurent Nguyen; Xiangbing Wu; Jing Zhao; Julian Ik Tsen Heng; Keri Martinowich; Jifang Tao; Hao Wu; Diogo S. Castro; Magdi M. Sobeih; Gabriel Corfas; Joseph G. Gleeson; Michael E. Greenberg; François Guillemot; Yi E. Sun
After cell birth, almost all neurons in the mammalian central nervous system migrate. It is unclear whether and how cell migration is coupled with neurogenesis. Here we report that proneural basic helix-loop-helix (bHLH) transcription factors not only initiate neuronal differentiation but also potentiate cell migration. Mechanistically, proneural bHLH factors regulate the expression of genes critically involved in migration, including down-regulation of RhoA small GTPase and up-regulation of doublecortin and p35, which, in turn, modulate the actin and microtubule cytoskeleton assembly and enable newly generated neurons to migrate. In addition, we report that several DNA-binding-deficient proneural genes that fail to initiate neuronal differentiation still activate migration, whereas a different mutation of a proneural gene that causes a failure in initiating cell migration still leads to robust neuronal differentiation. Collectively, these data suggest that transcription programs for neurogenesis and migration are regulated by bHLH factors through partially distinct mechanisms.
Cell | 2015
Yuping Luo; Volkan Coskun; Aibing Liang; Juehua Yu; Liming Cheng; Weihong Ge; Zhanping Shi; Kunshan Zhang; Chun Li; Yaru Cui; Haijun Lin; Dandan Luo; Junbang Wang; Connie Lin; Zachary Dai; Hongwen Zhu; Jun Zhang; Jie Liu; Hailiang Liu; Jean deVellis; Steve Horvath; Yi E. Sun; Siguang Li
The scarcity of tissue-specific stem cells and the complexity of their surrounding environment have made molecular characterization of these cells particularly challenging. Through single-cell transcriptome and weighted gene co-expression network analysis (WGCNA), we uncovered molecular properties of CD133(+)/GFAP(-) ependymal (E) cells in the adult mouse forebrain neurogenic zone. Surprisingly, prominent hub genes of the gene network unique to ependymal CD133(+)/GFAP(-) quiescent cells were enriched for immune-responsive genes, as well as genes encoding receptors for angiogenic factors. Administration of vascular endothelial growth factor (VEGF) activated CD133(+) ependymal neural stem cells (NSCs), lining not only the lateral but also the fourth ventricles and, together with basic fibroblast growth factor (bFGF), elicited subsequent neural lineage differentiation and migration. This study revealed the existence of dormant ependymal NSCs throughout the ventricular surface of the CNS, as well as signals abundant after injury for their activation.
Biochimica et Biophysica Acta | 2008
Mary E. Hamby; Volkan Coskun; Yi E. Sun
The transcriptional programs of neural progenitor cells change dynamically during neurogenesis, a process regulated by both intrinsic and extrinsic factors. Although many of the transcription factors required for neuronal differentiation have long been identified, we are only at the brink of understanding how epigenetic mechanisms influence transcriptional activity and the accessibility of transcription factors to bind consensus cis-elements. Herein, we delineate the chief epigenetic modifications and the machinery responsible for these alterations. Further, we review the epigenetic modifications presently known to participate in the maintenance of the neural progenitor cell state and in the regulation of neuronal differentiation.
Current Opinion in Neurobiology | 2012
Volkan Coskun; Rosemarie W. Tsoa; Yi E. Sun
Many lineage-specific genes are poised and silenced in stem cells. Upon differentiation, genes that are related to self-renewal and alternative lineages are stably silenced. CpG methylation at proximal promoters and PRC2-mediated H3K27me3 play a role in silencing genes temporarily or permanently, with or without coexistence of active epigenetic marks, respectively. Interestingly, DNA methylation on neuronal genes that is distal to transcription start site enable transcription activation owing to its ability to repel PRC2-mediated inhibition. In addition, DNA demethylase Tet proteins play a role in regulation of changes in DNA methylation and related H3K27me3 during differentiation. Collectively, a complex epigenetic network formed by H3K4me3, histone acetylation/deacetylation, H3K27me3 and DNA methylation/demethylation act together to regulate stem cell self-renewal and differentiation.
Science Signaling | 2007
Volkan Coskun; Jing Zhao; Yi E. Sun
Normal development of the nervous system relies on the spatially and temporally well-controlled differentiation of neurons and glia. Here, we discuss the intra- and extracellular molecular mechanisms that underlie the sequential genesis of neurons and glia, emphasizing recent studies describing the role of a signaling molecule, the tyrosine phosphatase SHP2, in normal brain development. Activation of SHP2 simultaneously enhances downstream activation of the MEK-ERK pathway, which subsequently promotes neurogenesis, while inhibiting the JAK-STAT pathway, which is critical for astroglial differentiation. Mutations in SHP2 that increase its tyrosine phosphatase activity cause a mental retardation–related disorder, Noonan syndrome. An imbalance in neurogenesis versus gliogenesis due to SHP2 mutations may contribute to Noonan syndrome.
Proceedings of the National Academy of Sciences of the United States of America | 2014
Rosemarie W. Tsoa; Volkan Coskun; Chi K. Ho; Jean de Vellis; Yi E. Sun
Significance The CRE/LoxP cell lineage tracing strategy has been applied effectively to label progenies derived from specific progenitors in different model organisms. Although this approach efficaciously labels cells expressing a specific marker, it often discounts the heterogeneity of the cell populations sharing the same cellular marker. In this study, we combined the CRE/LoxP tracing strategy with BrdU birth-dating analysis to separate the NG2 expression progenitor populations and identified the defined interneuronal versus oligodendroglial lineages on the basis of special and temporal specific origins. The studies on the exact lineage composition of NG2 expressing progenitors in the forebrain have been controversial. A number of studies have revealed the heterogeneous nature of postnatal NG2 cells. However, NG2 cells found in embryonic dates are far less understood. Our study indicates that early NG2 progenitors from a ventral origin (i.e., before embryonic day 16.5) tangentially migrate out of the medial ganglionic eminence and give rise to interneurons in deep layers of the dorsal cerebral cortex. The majority of myelinating oligodendrocytes found in both cortical gray and white matters are, in contrast, derived from NG2 progenitors with a neonatal subventricular zone origin. Our lineage tracing data reflect the heterogeneous nature of NG2 progenitor populations and define the relationship between lineage divergence and spatiotemporal origins. Beyond the typical lineage tracing studies of NG2+ cells, by costaining with lineage-specific markers, our study addresses the origins of heterogeneity and its implications in the differentiation potentials of NG2+ progenitors.
Journal of Neuroscience Research | 2016
Volkan Coskun; Ellen M. Carpenter
The last 40 years have seen a remarkable increase in the teaching of neuroscience at the undergraduate level. From its origins as a component of anatomy or physiology departments to its current status as an independent interdisciplinary field, neuroscience has become the chosen field of study for many undergraduate students, particularly for those interested in medical school or graduate school in neuroscience or related fields. We examined how life science–based neuroscience education is offered at large public universities in the Western United States. By examining publicly available materials posted online, we found that neuroscience education may be offered as an independent program, or as a component of biological or physiological sciences at many institutions. Neuroscience programs offer a course of study involving a core series of courses and a collection of topical electives. Many programs provide the opportunity for independent research, or for laboratory‐based training in neuroscience. Features of neuroscience programs at Western universities closely matched those seen at the top 25 public universities, as identified by U.S. News & World Report. While neuroscience programs were identified in many Western states, there were several states in which public universities appeared not to provide opportunities to major in neuroscience.