Weihong Ge
University of California, Los Angeles
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Weihong Ge.
Science | 2010
Hao Wu; Volkan Coskun; Jifang Tao; Wei Xie; Weihong Ge; Kazuaki Yoshikawa; En Li; Yi Zhang; Yi E. Sun
Location, Location, Location The genome receives epigenetic marks throughout development that regulate the activity of multiple genes. One such mark is methylation, which usually represses gene transcription. Methylation has generally been studied in the promoters of genes, where many regulatory signals coordinate to control the expression of the gene. Studying neural stem cells from mice, Wu et al. (p. 444) now show that DNA methylation can be a double-edged sword. Although methylation of DNA sequences in promoters tends to be repressive, methylation of DNA sequences beyond the promoters can actually promote gene expression. Analysis of the methyltransferase Dnmt3a in mouse neural stem cells revealed that methylations around neurogenic genes—but outside their promoters—maintained the activity of these genes. DNA methylation is normally repressive but can activate genes when the methylated sites lie outside promoter regions. DNA methylation at proximal promoters facilitates lineage restriction by silencing cell type–specific genes. However, euchromatic DNA methylation frequently occurs in regions outside promoters. The functions of such nonproximal promoter DNA methylation are unclear. Here we show that the de novo DNA methyltransferase Dnmt3a is expressed in postnatal neural stem cells (NSCs) and is required for neurogenesis. Genome-wide analysis of postnatal NSCs indicates that Dnmt3a occupies and methylates intergenic regions and gene bodies flanking proximal promoters of a large cohort of transcriptionally permissive genes, many of which encode regulators of neurogenesis. Surprisingly, Dnmt3a-dependent nonproximal promoter methylation promotes expression of these neurogenic genes by functionally antagonizing Polycomb repression. Thus, nonpromoter DNA methylation by Dnmt3a may be used for maintaining active chromatin states of genes critical for development.
Development | 2005
Guoping Fan; Keri Martinowich; Mark H. Chin; Fei He; Shaun D. Fouse; Leah Hutnick; Daisuke Hattori; Weihong Ge; Yin Shen; Hao Wu; Johanna ten Hoeve; Ke Shuai; Yi E. Sun
DNA methylation is a major epigenetic factor that has been postulated to regulate cell lineage differentiation. We report here that conditional gene deletion of the maintenance DNA methyltransferase I (Dnmt1) in neural progenitor cells (NPCs) results in DNA hypomethylation and precocious astroglial differentiation. The developmentally regulated demethylation of astrocyte marker genes as well as genes encoding the crucial components of the gliogenic JAK-STAT pathway is accelerated in Dnmt1–/– NPCs. Through a chromatin remodeling process, demethylation of genes in the JAK-STAT pathway leads to an enhanced activation of STATs, which in turn triggers astrocyte differentiation. Our study suggests that during the neurogenic period, DNA methylation inhibits not only astroglial marker genes but also genes that are essential for JAK-STAT signaling. Thus, demethylation of these two groups of genes and subsequent elevation of STAT activity are key mechanisms that control the timing and magnitude of astroglial differentiation.
Nature Neuroscience | 2005
Fei He; Weihong Ge; Keri Martinowich; Sara G. Becker-Catania; Volkan Coskun; Wenyu Zhu; Hao Wu; Diogo S. Castro; François Guillemot; Guoping Fan; Jean de Vellis; Yi E. Sun
During development of the CNS, neurons and glia are generated in a sequential manner. The mechanism underlying the later onset of gliogenesis is poorly understood, although the cytokine-induced Jak-STAT pathway has been postulated to regulate astrogliogenesis. Here, we report that the overall activity of Jak-STAT signaling is dynamically regulated in mouse cortical germinal zone during development. As such, activated STAT1/3 and STAT-mediated transcription are negligible at early, neurogenic stages, when neurogenic factors are highly expressed. At later, gliogenic periods, decreased expression of neurogenic factors causes robust elevation of STAT activity. Our data demonstrate a positive autoregulatory loop whereby STAT1/3 directly induces the expression of various components of the Jak-STAT pathway to strengthen STAT signaling and trigger astrogliogenesis. Forced activation of Jak-STAT signaling leads to precocious astrogliogenesis, and inhibition of this pathway blocks astrocyte differentiation. These observations suggest that autoregulation of the Jak-STAT pathway controls the onset of astrogliogenesis.
Journal of Cell Biology | 2005
Ena Ladi; James T. Nichols; Weihong Ge; Alison Miyamoto; Christine Yao; Liang-Tung Yang; Jim Boulter; Yi E. Sun; Chris Kintner; Gerry Weinmaster
Mutations in the DSL (Delta, Serrate, Lag2) Notch (N) ligand Delta-like (Dll) 3 cause skeletal abnormalities in spondylocostal dysostosis, which is consistent with a critical role for N signaling during somitogenesis. Understanding how Dll3 functions is complicated by reports that DSL ligands both activate and inhibit N signaling. In contrast to other DSL ligands, we show that Dll3 does not activate N signaling in multiple assays. Consistent with these findings, Dll3 does not bind to cells expressing any of the four N receptors, and N1 does not bind Dll3-expressing cells. However, in a cell-autonomous manner, Dll3 suppressed N signaling, as was found for other DSL ligands. Therefore, Dll3 functions not as an activator as previously reported but rather as a dedicated inhibitor of N signaling. As an N antagonist, Dll3 promoted Xenopus laevis neurogenesis and inhibited glial differentiation of mouse neural progenitors. Finally, together with the modulator lunatic fringe, Dll3 altered N signaling levels that were induced by other DSL ligands.
Proceedings of the National Academy of Sciences of the United States of America | 2006
Weihong Ge; Fei He; Kevin Kim; Bruno Blanchi; Volkan Coskun; Laurent Nguyen; Xiangbing Wu; Jing Zhao; Julian Ik Tsen Heng; Keri Martinowich; Jifang Tao; Hao Wu; Diogo S. Castro; Magdi M. Sobeih; Gabriel Corfas; Joseph G. Gleeson; Michael E. Greenberg; François Guillemot; Yi E. Sun
After cell birth, almost all neurons in the mammalian central nervous system migrate. It is unclear whether and how cell migration is coupled with neurogenesis. Here we report that proneural basic helix-loop-helix (bHLH) transcription factors not only initiate neuronal differentiation but also potentiate cell migration. Mechanistically, proneural bHLH factors regulate the expression of genes critically involved in migration, including down-regulation of RhoA small GTPase and up-regulation of doublecortin and p35, which, in turn, modulate the actin and microtubule cytoskeleton assembly and enable newly generated neurons to migrate. In addition, we report that several DNA-binding-deficient proneural genes that fail to initiate neuronal differentiation still activate migration, whereas a different mutation of a proneural gene that causes a failure in initiating cell migration still leads to robust neuronal differentiation. Collectively, these data suggest that transcription programs for neurogenesis and migration are regulated by bHLH factors through partially distinct mechanisms.
Journal of Neuroscience Research | 2002
Weihong Ge; Keri Martinowich; Xiangbing Wu; Fei He; Alison Miyamoto; Guoping Fan; Gerry Weinmaster; Yi E. Sun
In the developing central nervous system (CNS), Notch signaling preserves progenitor pools and inhibits neurogenesis and oligodendroglial differentiation. It has recently been postulated that Notch instructively drives astrocyte differentiation. Whether the role of Notch signaling in promoting astroglial differentiation is permissive or instructive has been debated. We report here that the astrogliogenic role of Notch is in part mediated by direct binding of the Notch intracellular domain to the CSL DNA binding protein, forming a transcriptional activation complex onto the astrocyte marker gene, glial fibrillary acidic protein (GFAP). In addition, we found that, in CSL–/– neural stem cell cultures, astrocyte differentiation was delayed but continued at a normal rate once initiated, suggesting that CSL is involved in regulating the onset of astrogliogenesis. Importantly, although the classical CSL‐dependent Notch signaling pathway is intact and able to activate the Notch canonical target promoter during the neurogenic phase, it is unable to activate the GFAP promoter during neurogenesis. Therefore, the effect of Notch signaling on target genes is influenced by cellular context in regulation of neurogenesis and gliogenesis.
Proceedings of the National Academy of Sciences of the United States of America | 2010
Hao Wu; Jifang Tao; Pauline J. Chen; Atif Shahab; Weihong Ge; Ronald P. Hart; Xiaoan Ruan; Yijun Ruan; Yi E. Sun
MicroRNAs (miRNAs) are a class of small, noncoding RNAs that function as posttranscriptional regulators of gene expression. Many miRNAs are expressed in the developing brain and regulate multiple aspects of neural development, including neurogenesis, dendritogenesis, and synapse formation. Rett syndrome (RTT) is a progressive neurodevelopmental disorder caused by mutations in the gene encoding methyl-CpG–binding protein 2 (MECP2). Although Mecp2 is known to act as a global transcriptional regulator, miRNAs that are directly regulated by Mecp2 in the brain are not known. Using massively parallel sequencing methods, we have identified miRNAs whose expression is altered in cerebella of Mecp2-null mice before and after the onset of severe neurological symptoms. In vivo genome-wide analyses indicate that promoter regions of a significant fraction of dysregulated miRNA transcripts, including a large polycistronic cluster of brain-specific miRNAs, are DNA-methylated and are bound directly by Mecp2. Functional analysis demonstrates that the 3′ UTR of messenger RNA encoding Brain-derived neurotrophic factor (Bdnf) can be targeted by multiple miRNAs aberrantly up-regulated in the absence of Mecp2. Taken together, these results suggest that dysregulation of miRNAs may contribute to RTT pathoetiology and also may provide a valuable resource for further investigations of the role of miRNAs in RTT.
Proceedings of the National Academy of Sciences of the United States of America | 2007
Hao Wu; Jun Xu; Zhiping P. Pang; Weihong Ge; Kevin Kim; Bruno Blanchi; Caifu Chen; Thomas C. Südhof; Yi E. Sun
The self-renewal and differentiation potential of human embryonic stem cells (hESCs) suggests that hESCs could be used for regenerative medicine, especially for restoring neuronal functions in brain diseases. However, the functional properties of neurons derived from hESC are largely unknown. Moreover, because hESCs were derived under diverse conditions, the possibility arises that neurons derived from different hESC lines exhibit distinct properties, but this possibility remains unexplored. To address these issues, we developed a protocol that allows stepwise generation from hESCs of cultures composed of ≈70–80% human neurons that exhibit spontaneous synaptic network activity. Comparison of neurons derived from the well characterized HSF1 and HSF6 hESC lines revealed that HSF1- but not HSF6-derived neurons exhibit forebrain properties. Accordingly, HSF1-derived neurons initially form primarily GABAergic synaptic networks, whereas HSF6-derived neurons initially form glutamatergic networks. microRNA profiling revealed significant expression differences between the two hESC lines, suggesting that microRNAs may influence their distinct differentiation properties. These observations indicate that although both HSF1 and HSF6 hESCs differentiate into functional neurons, the two hESC lines exhibit distinct differentiation potentials, suggesting that they are preprogrammed. Information on hESC line-specific differentiation biases is crucial for neural stem cell therapy and establishment of novel disease models using hESCs.
Cell | 2015
Yuping Luo; Volkan Coskun; Aibing Liang; Juehua Yu; Liming Cheng; Weihong Ge; Zhanping Shi; Kunshan Zhang; Chun Li; Yaru Cui; Haijun Lin; Dandan Luo; Junbang Wang; Connie Lin; Zachary Dai; Hongwen Zhu; Jun Zhang; Jie Liu; Hailiang Liu; Jean deVellis; Steve Horvath; Yi E. Sun; Siguang Li
The scarcity of tissue-specific stem cells and the complexity of their surrounding environment have made molecular characterization of these cells particularly challenging. Through single-cell transcriptome and weighted gene co-expression network analysis (WGCNA), we uncovered molecular properties of CD133(+)/GFAP(-) ependymal (E) cells in the adult mouse forebrain neurogenic zone. Surprisingly, prominent hub genes of the gene network unique to ependymal CD133(+)/GFAP(-) quiescent cells were enriched for immune-responsive genes, as well as genes encoding receptors for angiogenic factors. Administration of vascular endothelial growth factor (VEGF) activated CD133(+) ependymal neural stem cells (NSCs), lining not only the lateral but also the fourth ventricles and, together with basic fibroblast growth factor (bFGF), elicited subsequent neural lineage differentiation and migration. This study revealed the existence of dormant ependymal NSCs throughout the ventricular surface of the CNS, as well as signals abundant after injury for their activation.
Seminars in Cell & Developmental Biology | 2003
Yi E. Sun; Keri Martinowich; Weihong Ge
Neural stem cells (NSCs) are subscribed extraordinary potential in repair of the damaged nervous system. However, the molecular identity of NSCs has not been established. Most NSC cultures contain large numbers of multipotent, bipotent, and lineage restricted neural progenitors, the majority of which appear to lose neurogenic potential after expansion. This review first discusses the neurogenic to gliogenic switch that is characteristic of progenitor development in vivo and in NSC cultures, and then the cell intrinsic and extrinsic mechanisms regulating the sequential differentiation of neurons and glia. Finally, we discuss potential methods for maintaining the neurogenic potential of NSC cultures after expansion.