Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Volker Hartenstein is active.

Publication


Featured researches published by Volker Hartenstein.


Nature Methods | 2012

Fiji: an open-source platform for biological-image analysis

Johannes Schindelin; Ignacio Arganda-Carreras; Erwin Frise; Verena Kaynig; Mark Longair; Tobias Pietzsch; Stephan Preibisch; Curtis T. Rueden; Stephan Saalfeld; Benjamin Schmid; Jean-Yves Tinevez; Daniel James White; Volker Hartenstein; Kevin W. Eliceiri; Pavel Tomancak; Albert Cardona

Fiji is a distribution of the popular open-source software ImageJ focused on biological-image analysis. Fiji uses modern software engineering practices to combine powerful software libraries with a broad range of scripting languages to enable rapid prototyping of image-processing algorithms. Fiji facilitates the transformation of new algorithms into ImageJ plugins that can be shared with end users through an integrated update system. We propose Fiji as a platform for productive collaboration between computer science and biology research communities.


Genome Biology | 2002

Systematic determination of patterns of gene expression during Drosophila embryogenesis

Pavel Tomancak; Amy Beaton; Richard Weiszmann; Elaine Kwan; ShengQiang Shu; Suzanna E. Lewis; Stephen Richards; Michael Ashburner; Volker Hartenstein; Susan E. Celniker; Gerald M. Rubin

BackgroundCell-fate specification and tissue differentiation during development are largely achieved by the regulation of gene transcription.ResultsAs a first step to creating a comprehensive atlas of gene-expression patterns during Drosophila embryogenesis, we examined 2,179 genes by in situ hybridization to fixed Drosophila embryos. Of the genes assayed, 63.7% displayed dynamic expression patterns that were documented with 25,690 digital photomicrographs of individual embryos. The photomicrographs were annotated using controlled vocabularies for anatomical structures that are organized into a developmental hierarchy. We also generated a detailed time course of gene expression during embryogenesis using microarrays to provide an independent corroboration of the in situ hybridization results. All image, annotation and microarray data are stored in publicly available database. We found that the RNA transcripts of about 1% of genes show clear subcellular localization. Nearly all the annotated expression patterns are distinct. We present an approach for organizing the data by hierarchical clustering of annotation terms that allows us to group tissues that express similar sets of genes as well as genes displaying similar expression patterns.ConclusionsAnalyzing gene-expression patterns by in situ hybridization to whole-mount embryos provides an extremely rich dataset that can be used to identify genes involved in developmental processes that have been missed by traditional genetic analysis. Systematic analysis of rigorously annotated patterns of gene expression will complement and extend the types of analyses carried out using expression microarrays.


Neuron | 1994

The drosophila sine oculis locus encodes a homeodomain-containing protein required for the development of the entire visual system

Benjamin N.R. Cheyette; Patricia Green; Katherine Martin; Hideki Garren; Volker Hartenstein; S. Lawrence Zipursky

The transformation of an unpatterned epithelium into a patterned one is a fundamental issue in morphogenesis. This transformation occurs in a dramatic fashion in the developing eye imaginal disc, the primordium of the Drosophila compound eye. Molecular and developmental analyses reveals that the sine oculis (so) locus encodes a homeodomain-containing protein that is expressed and required in the unpatterned epithelium prior to morphogenesis. In mutants, cells undergo apoptosis. These findings argue that so plays an essential role in controlling the initial events of pattern formation in the eye disc. So is also expressed and required for the development of the rest of the fly visual system, including the optic lobes (i.e., those regions of the brain that process visual information). So is expressed in the optic lobe primordium prior to its invagination from the embryonic ectoderm; in so mutants, the optic lobe primordium fails to invaginate.


Genome Biology | 2007

Global analysis of patterns of gene expression during Drosophila embryogenesis

Pavel Tomancak; Benjamin P. Berman; Amy Beaton; Richard Weiszmann; Elaine Kwan; Volker Hartenstein; Susan E. Celniker; Gerald M. Rubin

BackgroundCell and tissue specific gene expression is a defining feature of embryonic development in multi-cellular organisms. However, the range of gene expression patterns, the extent of the correlation of expression with function, and the classes of genes whose spatial expression are tightly regulated have been unclear due to the lack of an unbiased, genome-wide survey of gene expression patterns.ResultsWe determined and documented embryonic expression patterns for 6,003 (44%) of the 13,659 protein-coding genes identified in the Drosophila melanogaster genome with over 70,000 images and controlled vocabulary annotations. Individual expression patterns are extraordinarily diverse, but by supplementing qualitative in situ hybridization data with quantitative microarray time-course data using a hybrid clustering strategy, we identify groups of genes with similar expression. Of 4,496 genes with detectable expression in the embryo, 2,549 (57%) fall into 10 clusters representing broad expression patterns. The remaining 1,947 (43%) genes fall into 29 clusters representing restricted expression, 20% patterned as early as blastoderm, with the majority restricted to differentiated cell types, such as epithelia, nervous system, or muscle. We investigate the relationship between expression clusters and known molecular and cellular-physiological functions.ConclusionNearly 60% of the genes with detectable expression exhibit broad patterns reflecting quantitative rather than qualitative differences between tissues. The other 40% show tissue-restricted expression; the expression patterns of over 1,500 of these genes are documented here for the first time. Within each of these categories, we identified clusters of genes associated with particular cellular and developmental functions.


PLOS ONE | 2012

TrakEM2 software for neural circuit reconstruction.

Albert Cardona; Stephan Saalfeld; Johannes Schindelin; Ignacio Arganda-Carreras; Stephan Preibisch; Mark Longair; Pavel Tomancak; Volker Hartenstein; Rodney J. Douglas

A key challenge in neuroscience is the expeditious reconstruction of neuronal circuits. For model systems such as Drosophila and C. elegans, the limiting step is no longer the acquisition of imagery but the extraction of the circuit from images. For this purpose, we designed a software application, TrakEM2, that addresses the systematic reconstruction of neuronal circuits from large electron microscopical and optical image volumes. We address the challenges of image volume composition from individual, deformed images; of the reconstruction of neuronal arbors and annotation of synapses with fast manual and semi-automatic methods; and the management of large collections of both images and annotations. The output is a neural circuit of 3d arbors and synapses, encoded in NeuroML and other formats, ready for analysis.


Neuron | 2014

A Systematic Nomenclature for the Insect Brain

Kei Ito; Kazunori Shinomiya; Masayoshi Ito; J. Douglas Armstrong; George Boyan; Volker Hartenstein; Steffen Harzsch; Martin Heisenberg; Uwe Homberg; Arnim Jenett; Haig Keshishian; Linda L. Restifo; Wolfgang Rössler; Julie H. Simpson; Nicholas J. Strausfeld; Roland Strauss; Leslie B. Vosshall

Despite the importance of the insect nervous system for functional and developmental neuroscience, descriptions of insect brains have suffered from a lack of uniform nomenclature. Ambiguous definitions of brain regions and fiber bundles have contributed to the variation of names used to describe the same structure. The lack of clearly determined neuropil boundaries has made it difficult to document precise locations of neuronal projections for connectomics study. To address such issues, a consortium of neurobiologists studying arthropod brains, the Insect Brain Name Working Group, has established the present hierarchical nomenclature system, using the brain of Drosophila melanogaster as the reference framework, while taking the brains of other taxa into careful consideration for maximum consistency and expandability. The following summarizes the consortiums nomenclature system and highlights examples of existing ambiguities and remedies for them. This nomenclature is intended to serve as a standard of reference for the study of the brain of Drosophila and other insects.


Neuron | 1997

InsP3 Receptor Is Essential for Growth and Differentiation but Not for Vision in Drosophila

Jairaj K. Acharya; Kees Jalink; Robert W. Hardy; Volker Hartenstein; Charles S. Zuker

Phospholipase C (PLC) is the focal point for two major signal transduction pathways: one initiated by G protein-coupled receptors and the other by tyrosine kinase receptors. Active PLC hydrolyzes phosphatidylinositol bisphosphate (PIP2) into the two second messengers inositol 1,4,5-trisphosphate (InsP3) and diacyl glycerol (DAG). DAG activates protein kinase C, and InsP3 mobilizes calcium from intracellular stores via the InsP3 receptor. Changes in [Ca2+]i regulate the function of a wide range of target proteins, including ion channels, kinases, phosphatases, proteases, and transcription factors (Berridge, 1993). In the mouse, there are three InsP3R genes, and type 1 InsP3R mutants display ataxia and epileptic seizures (Matsumoto et al., 1996). In Drosophila, only one InsP3 receptor (InsP3R) gene is known, and it is expressed ubiquitously throughout development (Hasan and Rosbash, 1992; Yoshikawa et al., 1992; Raghu and Hasan, 1995). Here, we characterize Drosophila InsP3R mutants and demonstrate that the InsP3R is essential for embryonic and larval development. Interestingly, maternal InsP3R mRNA is sufficient for progression through the embryonic stages, but larval organs show asynchronous and defective cell divisions, and imaginal discs arrest early and fail to differentiate. We also generated adult mosaic animals and demonstrate that phototransduction, a model PLC pathway thought to require InsP3R, does not require InsP3R for signaling.


PLOS Biology | 2010

An integrated micro- and macroarchitectural analysis of the Drosophila brain by computer-assisted serial section electron microscopy.

Albert Cardona; Stephan Saalfeld; Stephan Preibisch; Benjamin Schmid; Anchi Cheng; J Pulokas; Pavel Tomancak; Volker Hartenstein

The analysis of microcircuitry (the connectivity at the level of individual neuronal processes and synapses), which is indispensable for our understanding of brain function, is based on serial transmission electron microscopy (TEM) or one of its modern variants. Due to technical limitations, most previous studies that used serial TEM recorded relatively small stacks of individual neurons. As a result, our knowledge of microcircuitry in any nervous system is very limited. We applied the software package TrakEM2 to reconstruct neuronal microcircuitry from TEM sections of a small brain, the early larval brain of Drosophila melanogaster. TrakEM2 enables us to embed the analysis of the TEM image volumes at the microcircuit level into a light microscopically derived neuro-anatomical framework, by registering confocal stacks containing sparsely labeled neural structures with the TEM image volume. We imaged two sets of serial TEM sections of the Drosophila first instar larval brain neuropile and one ventral nerve cord segment, and here report our first results pertaining to Drosophila brain microcircuitry. Terminal neurites fall into a small number of generic classes termed globular, varicose, axiform, and dendritiform. Globular and varicose neurites have large diameter segments that carry almost exclusively presynaptic sites. Dendritiform neurites are thin, highly branched processes that are almost exclusively postsynaptic. Due to the high branching density of dendritiform fibers and the fact that synapses are polyadic, neurites are highly interconnected even within small neuropile volumes. We describe the network motifs most frequently encountered in the Drosophila neuropile. Our study introduces an approach towards a comprehensive anatomical reconstruction of neuronal microcircuitry and delivers microcircuitry comparisons between vertebrate and insect neuropile.


Cell and Tissue Research | 1993

The embryonic development of the Drosophila visual system

Patricia Green; Amelia Y. Hartenstein; Volker Hartenstein

We have used electron-microscopic studies, bromodeoxyuridine (BrdU) incorporation and antibody labeling to characterize the development of the Drosophila larval photoreceptor (or Bolwigs) organ and the optic lobe, and have investigated the role of Notch in the development of both. The optic lobe and Bolwigs organ develop by invagination from the posterior procephalic region. After cells in this region undergo four postblastoderm divisions, a total of approximately 85 cells invaginate. The optic lobe invagination loses contact with the outer surface of the embryo and forms an epithelial vesicle attached to the brain. Bolwigs organ arises from the ventralmost portion of the optic lobe invagination, but does not become incorporated in the optic lobe; instead, its 12 cells remain in the head epidermis until late in embryogenesis when they move in conjunction with head involution to reach their final position alongside the pharynx. Early, before head involution, the cells of Bolwigs organ form a superficial group of 7 cells arranged in a ‘rosette’ pattern and a deep group of 5 cells. Later, all neurons move out of the surface epithelium. Unlike adult photoreceptors, they do not form rhabdomeres; instead, they produce multiple, branched processes, which presumably carry the photopigment. Notch is essential for two aspects of the early development of the visual system. First, it delimits the number of cells incorporated into Bolwigs organ. Second, it is required for the maintenance of the epithelial character of the optic lobe cells during and after its invagination.


Nature | 2007

A Hedgehog- and Antennapedia-dependent niche maintains Drosophila haematopoietic precursors

Lolitika Mandal; Julian A. Martinez-Agosto; Cory J. Evans; Volker Hartenstein; Utpal Banerjee

The Drosophila melanogaster lymph gland is a haematopoietic organ in which pluripotent blood cell progenitors proliferate and mature into differentiated haemocytes. Previous work has defined three domains, the medullary zone, the cortical zone and the posterior signalling centre (PSC), within the developing third-instar lymph gland. The medullary zone is populated by a core of undifferentiated, slowly cycling progenitor cells, whereas mature haemocytes comprising plasmatocytes, crystal cells and lamellocytes are peripherally located in the cortical zone. The PSC comprises a third region that was first defined as a small group of cells expressing the Notch ligand Serrate. Here we show that the PSC is specified early in the embryo by the homeotic gene Antennapedia (Antp) and expresses the signalling molecule Hedgehog. In the absence of the PSC or the Hedgehog signal, the precursor population of the medullary zone is lost because cells differentiate prematurely. We conclude that the PSC functions as a haematopoietic niche that is essential for the maintenance of blood cell precursors in Drosophila. Identification of this system allows the opportunity for genetic manipulation and direct in vivo imaging of a haematopoietic niche interacting with blood precursors.

Collaboration


Dive into the Volker Hartenstein's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Albert Cardona

Howard Hughes Medical Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Wayne Pereanu

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Utpal Banerjee

University of California

View shared research outputs
Researchain Logo
Decentralizing Knowledge