Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Volker Kroehne is active.

Publication


Featured researches published by Volker Kroehne.


Science | 2012

Acute Inflammation Initiates the Regenerative Response in the Adult Zebrafish Brain

Nikos Kyritsis; Caghan Kizil; Sara Zocher; Volker Kroehne; Jan Kaslin; Dorian Freudenreich; Anne Iltzsche; Michael Brand

The Good Side of Inflammation The zebrafish brain is much more adept than the human brain at recovering after traumatic injury. Kyritsis et al. (p. 1353, published online 8 November; see the Perspective by Stella) investigated the cellular events that support regeneration in the zebrafish brain. Although inflammation is part of the response in both settings, the zebrafish brain goes on to initiate proliferation of replacement neurons. By inciting inflammation without neuronal damage, radial glial cells could be pushed into neurogenesis. An inflammatory response to traumatic injury promotes neurogenesis and repair in the zebrafish brain. The zebrafish regenerates its brain after injury and hence is a useful model organism to study the mechanisms enabling regenerative neurogenesis, which is poorly manifested in mammals. Yet the signaling mechanisms initiating such a regenerative response in fish are unknown. Using cerebroventricular microinjection of immunogenic particles and immunosuppression assays, we showed that inflammation is required and sufficient for enhancing the proliferation of neural progenitors and subsequent neurogenesis by activating injury-induced molecular programs that can be observed after traumatic brain injury. We also identified cysteinyl leukotriene signaling as an essential component of inflammation in the regenerative process of the adult zebrafish brain. Thus, our results demonstrate that in zebrafish, in contrast to mammals, inflammation is a positive regulator of neuronal regeneration in the central nervous system.


Development | 2011

Regeneration of the adult zebrafish brain from neurogenic radial glia-type progenitors.

Volker Kroehne; Dorian Freudenreich; Stefan Hans; Jan Kaslin; Michael Brand

Severe traumatic injury to the adult mammalian CNS leads to life-long loss of function. By contrast, several non-mammalian vertebrate species, including adult zebrafish, have a remarkable ability to regenerate injured organs, including the CNS. However, the cellular and molecular mechanisms that enable or prevent CNS regeneration are largely unknown. To study brain regeneration mechanisms in adult zebrafish, we developed a traumatic lesion assay, analyzed cellular reactions to injury and show that adult zebrafish can efficiently regenerate brain lesions and lack permanent glial scarring. Using Cre-loxP-based genetic lineage-tracing, we demonstrate that her4.1-positive ventricular radial glia progenitor cells react to injury, proliferate and generate neuroblasts that migrate to the lesion site. The newly generated neurons survive for more than 3 months, are decorated with synaptic contacts and express mature neuronal markers. Thus, regeneration after traumatic lesion of the adult zebrafish brain occurs efficiently from radial glia-type stem/progenitor cells.


Developmental Neurobiology | 2012

Adult neurogenesis and brain regeneration in zebrafish

Caghan Kizil; Jan Kaslin; Volker Kroehne; Michael Brand

Adult neurogenesis is a widespread trait of vertebrates; however, the degree of this ability and the underlying activity of the adult neural stem cells differ vastly among species. In contrast to mammals that have limited neurogenesis in their adult brains, zebrafish can constitutively produce new neurons along the whole rostrocaudal brain axis throughout its life. This feature of adult zebrafish brain relies on the presence of stem/progenitor cells that continuously proliferate, and the permissive environment of zebrafish brain for neurogenesis. Zebrafish has also an extensive regenerative capacity, which manifests itself in responding to central nervous system injuries by producing new neurons to replenish the lost ones. This ability makes zebrafish a useful model organism for understanding the stem cell activity in the brain, and the molecular programs required for central nervous system regeneration. In this review, we will discuss the current knowledge on the stem cell niches, the characteristics of the stem/progenitor cells, how they are regulated and their involvement in the regeneration response of the adult zebrafish brain. We will also emphasize the open questions that may help guide the future research.


Developmental Cell | 2012

Regenerative Neurogenesis from Neural Progenitor Cells Requires Injury-Induced Expression of Gata3

Caghan Kizil; Nikos Kyritsis; Stefanie Dudczig; Volker Kroehne; Dorian Freudenreich; Jan Kaslin; Michael Brand

The adult zebrafish brain, unlike mammalian counterparts, can regenerate after injury owing to the neurogenic capacity of stem cells with radial glial character. We hypothesized that injury-induced regenerative programs might be turned on after injury in zebrafish brain and enable regenerative neurogenesis. Here we identify one such gene-the transcription factor gata3-which is expressed only after injury in different zebrafish organs. Gata3 is required for reactive proliferation of radial glia cells, subsequent regenerative neurogenesis, and migration of the newborn neurons. We found that these regeneration-specific roles of Gata3 are dependent on the injury because Gata3 overexpression in the unlesioned adult zebrafish brain is not sufficient to induce neurogenesis. Thus, gata3 acts as a specific injury-induced proregenerative factor that is essential for the regenerative capacity in vertebrates.


Neural Development | 2012

The chemokine receptor cxcr5 regulates the regenerative neurogenesis response in the adult zebrafish brain

Caghan Kizil; Stefanie Dudczig; Nikos Kyritsis; Anja Machate; Juliane Blaesche; Volker Kroehne; Michael Brand

BackgroundUnlike mammals, zebrafish exhibits extensive neural regeneration after injury in adult stages of its lifetime due to the neurogenic activity of the radial glial cells. However, the genes involved in the regenerative neurogenesis response of the zebrafish brain are largely unknown. Thus, understanding the underlying principles of this regeneration capacity of the zebrafish brain is an interesting research realm that may offer vast clinical ramifications.ResultsIn this paper, we characterized the expression pattern of cxcr5 and analyzed the function of this gene during adult neurogenesis and regeneration of the zebrafish telencephalon. We found that cxcr5 was upregulated transiently in the RGCs and neurons, and the expression in the immune cells such as leukocytes was negligible during both adult neurogenesis and regeneration. We observed that the transgenic misexpression of cxcr5 in the ventricular cells using dominant negative and full-length variants of the gene resulted in altered proliferation and neurogenesis response of the RGCs. When we knocked down cxcr5 using antisense morpholinos and cerebroventricular microinjection, we observed outcomes similar to the overexpression of the dominant negative cxcr5 variant.ConclusionsThus, based on our results, we propose that cxcr5 imposes a proliferative permissiveness to the radial glial cells and is required for differentiation of the RGCs to neurons, highlighting novel roles of cxcr5 in the nervous system of vertebrates. We therefore suggest that cxcr5 is an important cue for ventricular cell proliferation and regenerative neurogenesis in the adult zebrafish telencephalon. Further studies on the role of cxcr5 in mediating neuronal replenishment have the potential to produce clinical ramifications in efforts for regenerative therapeutic applications for human neurological disorders or acute injuries.


Neural Development | 2013

Development and specification of cerebellar stem and progenitor cells in zebrafish: from embryo to adult

Jan Kaslin; Volker Kroehne; Francesca Benato; Francesco Argenton; Michael Brand

BackgroundTeleost fish display widespread post-embryonic neurogenesis originating from many different proliferative niches that are distributed along the brain axis. During the development of the central nervous system (CNS) different cell types are produced in a strict temporal order from increasingly committed progenitors. However, it is not known whether diverse neural stem and progenitor cell types with restricted potential or stem cells with broad potential are maintained in the teleost fish brain.ResultsTo study the diversity and output of neural stem and progenitor cell populations in the zebrafish brain the cerebellum was used as a model brain region, because of its well-known architecture and development. Transgenic zebrafish lines, in vivo imaging and molecular markers were used to follow and quantify how the proliferative activity and output of cerebellar progenitor populations progress. This analysis revealed that the proliferative activity and progenitor marker expression declines in juvenile zebrafish before they reach sexual maturity. Furthermore, this correlated with the diminished repertoire of cell types produced in the adult. The stem and progenitor cells derived from the upper rhombic lip were maintained into adulthood and they actively produced granule cells. Ventricular zone derived progenitor cells were largely quiescent in the adult cerebellum and produced a very limited number of glia and inhibitory inter-neurons. No Purkinje or Eurydendroid cells were produced in fish older than 3 months. This suggests that cerebellar cell types are produced in a strict temporal order from distinct pools of increasingly committed stem and progenitor cells.ConclusionsOur results in the zebrafish cerebellum show that neural stem and progenitor cell types are specified and they produce distinct cell lineages and sub-types of brain cells. We propose that only specific subtypes of brain cells are continuously produced throughout life in the teleost fish brain. This implies that the post-embryonic neurogenesis in fish is linked to the production of particular neurons involved in specific brain functions, rather than to general, indeterminate growth of the CNS and all of its cell types.


F1000Research | 2014

Subdivisions of the adult zebrafish pallium based on molecular marker analysis

Julia Ganz; Volker Kroehne; Dorian Freudenreich; Anja Machate; Michaela Geffarth; Ingo Braasch; Jan Kaslin; Michael Brand

BACKGROUND The telencephalon shows a remarkable structural diversity among vertebrates. In particular, the everted telencephalon of ray-finned fishes has a markedly different morphology compared to the evaginated telencephalon of all other vertebrates. This difference in development has hampered the comparison between different areas of the pallium of ray-finned fishes and the pallial nuclei of all other vertebrates. Various models of homology between pallial subdivisions in ray-finned fishes and the pallial nuclei in tetrapods have been proposed based on connectional, neurochemical, gene expression and functional data. However, no consensus has been reached so far. In recent years, the analysis of conserved developmental marker genes has assisted the identification of homologies for different parts of the telencephalon among several tetrapod species. RESULTS We have investigated the gene expression pattern of conserved marker genes in the adult zebrafish ( Danio rerio) pallium to identify pallial subdivisions and their homology to pallial nuclei in tetrapods. Combinatorial expression analysis of ascl1a, eomesa, emx1, emx2, emx3, and Prox1 identifies four main divisions in the adult zebrafish pallium. Within these subdivisions, we propose that Dm is homologous to the pallial amygdala in tetrapods and that the dorsal subdivision of Dl is homologous to part of the hippocampal formation in mouse. We have complemented this analysis be examining the gene expression of emx1, emx2 and emx3 in the zebrafish larval brain. CONCLUSIONS Based on our gene expression data, we propose a new model of subdivisions in the adult zebrafish pallium and their putative homologies to pallial nuclei in tetrapods. Pallial nuclei control sensory, motor, and cognitive functions, like memory, learning and emotion. The identification of pallial subdivisions in the adult zebrafish and their homologies to pallial nuclei in tetrapods will contribute to the use of the zebrafish system as a model for neurobiological research and human neurodegenerative diseases.


Development | 2017

Distinct roles of neuroepithelial-like and radial glia-like progenitor cells in cerebellar regeneration

Jan Kaslin; Volker Kroehne; Julia Ganz; Stefan Hans; Michael Brand

Zebrafish can regenerate after brain injury, and the regenerative process is driven by resident stem cells. Stem cells are heterogeneous in the vertebrate brain, but the significance of having heterogeneous stem cells in regeneration is not understood. Limited availability of specific stem cells might impair the regeneration of particular cell lineages. We studied regeneration of the adult zebrafish cerebellum, which contains two major stem and progenitor cell types: ventricular zone and neuroepithelial cells. Using conditional lineage tracing we demonstrate that cerebellar regeneration depends on the availability of specific stem cells. Radial glia-like cells are thought to be the predominant stem cell type in homeostasis and after injury. However, we find that radial glia-like cells play a minor role in adult cerebellar neurogenesis and in recovery after injury. Instead, we find that neuroepithelial cells are the predominant stem cell type supporting cerebellar regeneration after injury. Zebrafish are able to regenerate many, but not all, cell types in the cerebellum, which emphasizes the need to understand the contribution of different adult neural stem and progenitor cell subtypes in the vertebrate central nervous system. Summary: Neuroepithelial cells are the predominant stem cell type to support cerebellar regeneration after injury in Zebrafish, as opposed to radial glia-like cells, which play a relatively minor role.


Mechanisms of Development | 2009

19-P003 Proliferation and cell fates during regeneration of the adult zebrafish brain

Volker Kroehne; Jan Kaslin; Michael Brand

19-P001 Smed-evi/wntless is required for b-catenin-dependent and independent processes during planarian regeneration Teresa Adell, Emili Saló, Michael Boutros, Kerstin Bartscherer 1 Department of Genetics and Institute of Biomedicine of the University of Barcelona (IBUB), Barcelona, Spain 2 German Cancer Research Center, Div. of Signaling and Functional Genomics, Heidelberg, Germany 3 University of Heidelberg/Faculty of Medicine Mannheim, Dept. of Cell and Molecular Biology, Heidelberg, Germany


Frontiers in Cellular Neuroscience | 2017

Primary Spinal OPC Culture System from Adult Zebrafish to Study Oligodendrocyte Differentiation In Vitro

Volker Kroehne; Vasiliki Tsata; Lara Marrone; Claudia Froeb; Susanne Reinhardt; Anne Gompf; Andreas Dahl; Jared Sterneckert; Michell M. Reimer

Endogenous oligodendrocyte progenitor cells (OPCs) are a promising target to improve functional recovery after spinal cord injury (SCI) by remyelinating denuded, and therefore vulnerable, axons. Demyelination is the result of a primary insult and secondary injury, leading to conduction blocks and long-term degeneration of the axons, which subsequently can lead to the loss of their neurons. In response to SCI, dormant OPCs can be activated and subsequently start to proliferate and differentiate into mature myelinating oligodendrocytes (OLs). Therefore, researchers strive to control OPC responses, and utilize small molecule screening approaches in order to identify mechanisms of OPC activation, proliferation, migration and differentiation. In zebrafish, OPCs remyelinate axons of the optic tract after lysophosphatidylcholine (LPC)-induced demyelination back to full thickness myelin sheaths. In contrast to zebrafish, mammalian OPCs are highly vulnerable to excitotoxic stress, a cause of secondary injury, and remyelination remains insufficient. Generally, injury induced remyelination leads to shorter internodes and thinner myelin sheaths in mammals. In this study, we show that myelin sheaths are lost early after a complete spinal transection injury, but are re-established within 14 days after lesion. We introduce a novel, easy-to-use, inexpensive and highly reproducible OPC culture system based on dormant spinal OPCs from adult zebrafish that enables in vitro analysis. Zebrafish OPCs are robust, can easily be purified with high viability and taken into cell culture. This method enables to examine why zebrafish OPCs remyelinate better than their mammalian counterparts, identify cell intrinsic responses, which could lead to pro-proliferating or pro-differentiating strategies, and to test small molecule approaches. In this methodology paper, we show efficient isolation of OPCs from adult zebrafish spinal cord and describe culture conditions that enable analysis up to 10 days in vitro. Finally, we demonstrate that zebrafish OPCs differentiate into Myelin Basic Protein (MBP)-expressing OLs when co-cultured with human motor neurons differentiated from induced pluripotent stem cells (iPSCs). This shows that the basic mechanisms of oligodendrocyte differentiation are conserved across species and that understanding the regulation of zebrafish OPCs can contribute to the development of new treatments to human diseases.

Collaboration


Dive into the Volker Kroehne's collaboration.

Top Co-Authors

Avatar

Michael Brand

Dresden University of Technology

View shared research outputs
Top Co-Authors

Avatar

Jan Kaslin

Australian Regenerative Medicine Institute

View shared research outputs
Top Co-Authors

Avatar

Caghan Kizil

Dresden University of Technology

View shared research outputs
Top Co-Authors

Avatar

Dorian Freudenreich

Dresden University of Technology

View shared research outputs
Top Co-Authors

Avatar

Nikos Kyritsis

Dresden University of Technology

View shared research outputs
Top Co-Authors

Avatar

Anja Machate

Dresden University of Technology

View shared research outputs
Top Co-Authors

Avatar

Stefanie Dudczig

Dresden University of Technology

View shared research outputs
Top Co-Authors

Avatar

Juliane Blaesche

Dresden University of Technology

View shared research outputs
Top Co-Authors

Avatar

Stefan Hans

Dresden University of Technology

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge