Volker Kummer
University of Potsdam
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Volker Kummer.
Nature | 2010
Christoph Scherber; Nico Eisenhauer; Wolfgang W. Weisser; Bernhard Schmid; Winfried Voigt; Markus Fischer; Ernst-Detlef Schulze; Christiane Roscher; Alexandra Weigelt; Eric Allan; Holger Beßler; Michael Bonkowski; N. C. Buchmann; François Buscot; Lars W. Clement; Anne Ebeling; Christof Engels; Stefan Halle; Ilona Kertscher; Alexandra-Maria Klein; Robert Koller; Stephan König; Esther Kowalski; Volker Kummer; Annely Kuu; Markus Lange; Dirk Lauterbach; Cornelius Middelhoff; Varvara D. Migunova; Alexandru Milcu
Biodiversity is rapidly declining, and this may negatively affect ecosystem processes, including economically important ecosystem services. Previous studies have shown that biodiversity has positive effects on organisms and processes across trophic levels. However, only a few studies have so far incorporated an explicit food-web perspective. In an eight-year biodiversity experiment, we studied an unprecedented range of above- and below-ground organisms and multitrophic interactions. A multitrophic data set originating from a single long-term experiment allows mechanistic insights that would not be gained from meta-analysis of different experiments. Here we show that plant diversity effects dampen with increasing trophic level and degree of omnivory. This was true both for abundance and species richness of organisms. Furthermore, we present comprehensive above-ground/below-ground biodiversity food webs. Both above ground and below ground, herbivores responded more strongly to changes in plant diversity than did carnivores or omnivores. Density and richness of carnivorous taxa was independent of vegetation structure. Below-ground responses to plant diversity were consistently weaker than above-ground responses. Responses to increasing plant diversity were generally positive, but were negative for biological invasion, pathogen infestation and hyperparasitism. Our results suggest that plant diversity has strong bottom-up effects on multitrophic interaction networks, with particularly strong effects on lower trophic levels. Effects on higher trophic levels are indirectly mediated through bottom-up trophic cascades.
Molecular Phylogenetics and Evolution | 2015
Young Joon Choi; Steven J. Klosterman; Volker Kummer; Hermann Voglmayr; Hyeon Dong Shin; Marco Thines
Accurate species determination of plant pathogens is a prerequisite for their control and quarantine, and further for assessing their potential threat to crops. The family Peronosporaceae (Straminipila; Oomycota) consists of obligate biotrophic pathogens that cause downy mildew disease on angiosperms, including a large number of cultivated plants. In the largest downy mildew genus Peronospora, a phylogenetically complex clade includes the economically important downy mildew pathogens of spinach and beet, as well as the type species of the genus Peronospora. To resolve this complex clade at the species level and to infer evolutionary relationships among them, we used multi-locus phylogenetic analysis and species tree estimation. Both approaches discriminated all nine currently accepted species and revealed four previously unrecognized lineages, which are specific to a host genus or species. This is in line with a narrow species concept, i.e. that a downy mildew species is associated with only a particular host plant genus or species. Instead of applying the dubious name Peronospora farinosa, which has been proposed for formal rejection, our results provide strong evidence that Peronospora schachtii is an independent species from lineages on Atriplex and apparently occurs exclusively on Beta vulgaris. The members of the clade investigated, the Peronospora rumicis clade, associate with three different host plant families, Amaranthaceae, Caryophyllaceae, and Polygonaceae, suggesting that they may have speciated following at least two recent inter-family host shifts, rather than contemporary cospeciation with the host plants.
Mycological Progress | 2004
Nosratollah Ale-Agha; Adrien Bolay; Uwe Braun; Benno Feige; Horst Jage; Volker Kummer; Aleš Lebeda; Marcin Piątek; Hyeon-Dong Shin; Katarína Zimmermannová-Pastirčaková
The recent epidemic spread of the North American powdery mildew Erysiphe elevata in Europe is described and discussed. Since 2002, this plant pathogenic fungus has been collected on Catalpa bignonioides, C. erubescens and C. speciosa in the Czech Republic, Germany, Hungary, Slovakia and Switzerland. The diagnostically important anamorph of E. elevata, so far unknown, is described and illustrated in detail. Type material of Erysiphe catalpae and two specimens of E. catalpae recently collected in Poland have been examined and compared with E. elevata. The anamorph as well as the teleomorph of E. catalpae proved to be easily distinguishable from E. elevata. The supposition that E. catalpae, introduced in Armenia, was based on immature ascomata of E. elevata proved to be wrong. The origin and distribution of E. catalpae are discussed, and a key to powdery mildew fungi on Catalpa spp. in Europe is provided.
Taxon | 2016
Tahir Ali; Angelika Schmuker; Fabian Runge; Irina Solovyeva; Lisa Nigrelli; Juraj Paule; Ann-Katrin Buch; Xiaojuan Xia; Sebastian Ploch; Ouria Orren; Volker Kummer; Ib Linde-Laursen; Marian Ørgaard; Thure Pablo Hauser; Ali Çelik; Marco Thines
The genus Thlaspi has been variously subdivided since its description by Linnaeus in 1753, but due to similarities in fruit shape several segregates have still not gained broad recognition, despite the fact that they are not directly related to Thlaspi. This applies especially to segregates now considered to belong to the tribe Coluteocarpeae, which includes several well-studied taxa, e.g., Noccaea caerulescens (syn. Thlaspi caerulescens), and the widespread Microthlaspi perfoliatum (syn. Thlaspi perfoliatum). The taxonomy of this tribe is still debated, as a series of detailed monographs on Coluteocarpeae was not published in English and a lack of phylogenetic resolution within this tribe was found in previous studies. The current study presents detailed phylogenetic investigations and a critical review of morphological features, with focus on taxa previously placed in Microthlaspi. Based on one nuclear (ITS) and two chloroplast (matK, trnL-F) loci, four strongly supported major groups were recovered among the Coluteocarpeae genera included, corresponding to Ihsanalshehbazia gen. nov., Friedrichkarlmeyeria gen. nov., Microthlaspi s.str., and Noccaea s.l. In addition, two new species of Microthlaspi, M. sylvarum-cedri sp. nov. and M. mediterraneo-orientale sp. nov., were discovered, which are well supported by both morphological and molecular data. Furthermore, M. erraticum comb. nov. (diploid) and M. perfoliatum s.str. (polyploid) were shown to be distinct species, phylogenetically widely separate, but with some overlap in several morphological characters. Detailed descriptions, notes on taxonomy, geographical distribution, and line drawings for the new species and each species previously included in Microthlaspi are provided. In addition, the current taxonomic state of the tribe Coluteocarpeae is briefly discussed and it is concluded that while several annual taxa are clearly distinct from Noccaea, many perennial taxa, after thorough phylogenetic and morphological investigations, may have to be merged with this genus.
Mycological Progress | 2013
Marco Thines; Volker Kummer
Floricolous downy mildews are a monophyletic group of members of the genus Peronospora (Oomycota, Peronosporales). These downy mildews can be found on a variety of families of the Asteridae, including Asteraceae, Campanulaceae, Dipsacaceae, Lamiaceae, and Orobanchaceae. With the exception of Peronospora radii, which can also cause economically relevant losses, sporulation usually takes place only on floral parts of their hosts. However, only very few specimens of these mostly inconspicuous downy mildews have so far been included in molecular phylogenies. Focusing on Lamiaceae, we have investigated multiple specimens of floricolous downy mildews for elucidating species boundaries and host specificity in this group. Based on both mitochondrial and nuclear loci, it became apparent that phylogenetic lineages in the Lamiaceae seem to be host genus specific and significant sequence diversity could be found between lineages. Based on distinctiveness in both phylogenetic reconstructions and morphology, the downy mildew on flowers of Stachys palustris is introduced as a new species, Peronospora jagei sp. nov., which can be morphologically distinguished from Peronospora stigmaticola by broader and shorter conidiospores. The diversity of the floricolous down mildews might be higher than previously assumed, although specimens from a much broader set of samples will be needed to confirm this view.
Journal of Ecology | 2017
Tanja Rottstock; Volker Kummer; Markus Fischer; Jasmin Joshi
Plant species persistence in natural communities requires coping with biotic and abiotic challenges. These challenges also depend on plant community composition and diversity. Over time, biodiversity effects have been shown to be strengthened via increasing species complementarity in mixtures. Little is known, however, whether differences in community diversity and composition induce rapid transgenerational phenotypic adaptive differentiation during community assembly. We expect altered plant–plant and other biotic interactions (mutualists or antagonists) in high vs. low diverse communities to affect immediate within- and between-species trait differentiations due to competition for light and nutrients. Three years after the initiation of a large-scale, long-term biodiversity experiment in Jena, Germany, we tested for effects of varying experimental plant community diversity (1–60 plant species; one to four plant functional groups) and composition (with or without legumes and/or grasses) on phenotypic differentiation and variation of the tall herb Knautia arvensis. We measured reproduction at different diversity levels in the Jena Experiment (residents hereafter) and, in an additional common garden experiment without competition, recorded subsequent offspring performance (i.e. growth, reproductive success and susceptibility to powdery mildew) to test for differentiation in phenotypic expression and variability. We observed phenotypic differences among diversity levels with reduced fecundity of K. arvensis residents in more diverse communities. In the next generation grown under common garden conditions, offspring from high-diversity plots showed reduced growth (i.e. height) and lower reproduction (i.e. fewer infructescences), but increased phenotypic trait variability (e.g. in leaf width and powdery mildew presence) and also tended to be less susceptible to powdery mildew infection. Community composition also affected Knautia parents and offspring. In the presence of legumes, resident plants produced more seeds (increased fecundity); however, germination rate of those seeds was reduced at an early seedling stage (reduced fertility). Synthesis. We conclude that rapid transgenerational effects of community diversity and composition on both mean and variation of phenotypic traits among offspring exist. In addition to heritable variation, environmentally induced epigenetic and/or maternal processes matter for early plant community assembly and may also determine future species coexistence and community stability.
Mycological Progress | 2017
Marlena Görg; Sebastian Ploch; Julia Kruse; Volker Kummer; Fabian Runge; Y. J. Choi; Marco Thines
The oomycete Plasmopara obducens was first described on wild Impatiens noli-tangere in Germany in 1877. About 125 years later the first occurrence of P. obducens on cultivated I. walleriana in the United Kingdom was reported, and a worldwide epidemic followed. Although this pathogen is a major threat for ornamental busy lizzy, the identity of the pathogen remained unconfirmed and the high host specificity observed for the genus Plasmopara cast doubts regarding its determination as P. obducens. In this study, using multigene phylogenies and morphological investigation, it is revealed that P. obducens on I. noli-tangere is not the conspecific with the pathogen affecting I. walleriana and another ornamental balsam, I. balsamina. As a consequence, the new names P. destructor and P. velutina are introduced for the pathogens of I. walleriana and I. balsamina, respectively.
MycoKeys | 2018
Julia Kruse; Volker Kummer; Roger G. Shivas; Marco Thines
Abstract There are 63 known species of Thecaphora (Glomosporiaceae, Ustilaginomycotina), a third of which occur on Asteraceae. These smut fungi produce yellowish-brown to reddish-brown masses of spore balls in specific, mostly regenerative, plant organs. A species of Thecaphora was collected in the flower heads of Anthemischia (Anthemideae, Asteraceae) on Rhodes Island, Greece, in 2015 and 2017, which represents the first smut record of a smut fungus on a host plant species in this tribe. Based on its distinctive morphology, host species and genetic divergence, this species is described as Thecaphoraanthemidissp. nov. Molecular barcodes of the ITS region are provided for this and several other species of Thecaphora. A phylogenetic and morphological comparison to closely related species showed that Th.anthemidis differed from other species of Thecaphora. Thecaphoraanthemidis produced loose spore balls in the flower heads and peduncles of Anthemischia unlike other flower-infecting species.
Fungal Biology | 2008
Jens Bitzer; Thomas Læssøe; Jacques Fournier; Volker Kummer; Cony Decock; Hans-Volker Tichy; Meike Piepenbring; Derek Peršoh; Marc Stadler
Ecology | 2014
Tanja Rottstock; Jasmin Joshi; Volker Kummer; Markus Fischer