Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Volker Leen is active.

Publication


Featured researches published by Volker Leen.


Chemical Communications | 2010

A highly sensitive, selective, colorimetric and near-infrared fluorescent turn-on chemosensor for Cu2+ based on BODIPY

Shouchun Yin; Volker Leen; Sven Van Snick; Noël Boens; Wim Dehaen

A new colorimetric and NIR fluorescent chemosensor (1) for Cu(2+) based on BODIPY is reported, displaying a highly sensitive and selective fluorescent enhancement with Cu(2+) among various metal ions, upon excitation at 620 nm in CH(3)CN.


Journal of Physical Chemistry A | 2009

Synthesis, Spectroscopy, Crystal Structure, Electrochemistry, and Quantum Chemical and Molecular Dynamics Calculations of a 3-Anilino Difluoroboron Dipyrromethene Dye

Wenwu Qin; Volker Leen; Taoufik Rohand; Wim Dehaen; Peter Dedecker; Mark Van der Auweraer; Koen Robeyns; Luc Van Meervelt; David Beljonne; Bernard Van Averbeke; John N. Clifford; Kris Driesen; Koen Binnemans; N. Boens

An asymmetrically substituted fluorescent difluoroboron dipyrromethene (BODIPY) dye, with a phenylamino group at the 3-position of the BODIPY chromophore, has been synthesized by nucleophilic substitution of 3,5-dichloro-8-(4-tolyl)-4,4-difluoro-4-bora-3a,4a-diaza-s-indacene. The solvent-dependent spectroscopic and photophysical properties have been investigated by means of UV-vis spectrophotometry and steady-state and time-resolved fluorometry and reflect the large effect of the anilino substituent on the fluorescence characteristics. The compound has a low fluorescence quantum yield in all but the apolar solvents cyclohexane, toluene, and chloroform. Its emission maxima in a series of solvents from cyclohexane to methanol are red-shifted by approximately 50 nm in comparison to classic BODIPY derivatives. Its oxidation potential in dichloromethane is at ca. 1.14 V versus Ag/AgCl. The absorption bandwidths and Stokes shifts are much larger than those of typical, symmetric difluoroboron dipyrromethene dyes. The values of the fluorescence rate constant are in the (1.4-1.7) x 10(8) s(-1) range and do not vary much between the solvents studied. X-ray diffraction analysis shows that the BODIPY core is planar. Molecular dynamics simulations show that there is no clear indication for aggregates in solution.


Journal of Organic Chemistry | 2011

1,7-Disubstituted Boron Dipyrromethene (BODIPY) Dyes: Synthesis and Spectroscopic Properties

Volker Leen; Dominique Miscoria; Shouchun Yin; Aleksander Filarowski; Joseph Molisho Ngongo; Mark Van der Auweraer; Noël Boens; Wim Dehaen

1,7-Dihalogenated boron dipyrromethene dyes were successfully synthesized and substituted, thus providing an entry to the final, elusive reactivity pattern. The spectroscopic properties of 1,7-disubstituted BODIPY dyes were studied and are discussed as a function of their structure.


Organic Letters | 2012

Synthesis of Meso-Halogenated BODIPYs and Access to Meso-Substituted Analogues

Volker Leen; Peijia Yuan; Lina Wang; Noël Boens; Wim Dehaen

8-Halogenated boradiaza-s-indacenes can be efficiently prepared from dipyrrylketones. The new dyes react smoothly with nucleophiles to yield N-, O-, and S-substituted chromophores, as well as transition-metal-catalyzed cross-coupling reactions. The nature of the new substitutent has a strong influence on the spectral properties of the dyes.


Organic Letters | 2011

Vicarious Nucleophilic Substitution of α-Hydrogen of BODIPY and Its Extension to Direct Ethenylation

Volker Leen; Mark Van der Auweraer; N. Boens; Wim Dehaen

Direct, oxidizer-free substitution of the 3-hydrogen of BODIPY derivatives has been established through a vicarious nucleophilic substitution procedure. This methodology has been combined with a reversible Michael addition on nitrostyrenes to provide a novel, highly efficient entry to the valuable 3-styrylated BODIPY dyes.


Nucleic Acids Research | 2014

Super-resolution optical DNA Mapping via DNA methyltransferase-directed click chemistry

Charlotte Vranken; Jochem Deen; Lieve Dirix; Tim Stakenborg; Wim Dehaen; Volker Leen; Johan Hofkens; Robert K. Neely

We demonstrate an approach to optical DNA mapping, which enables near single-molecule characterization of whole bacteriophage genomes. Our approach uses a DNA methyltransferase enzyme to target labelling to specific sites and copper-catalysed azide-alkyne cycloaddition to couple a fluorophore to the DNA. We achieve a labelling efficiency of ∼70% with an average labelling density approaching one site every 500 bp. Such labelling density bridges the gap between the output of a typical DNA sequencing experiment and the long-range information derived from traditional optical DNA mapping. We lay the foundations for a wider-scale adoption of DNA mapping by screening 11 methyltransferases for their ability to direct sequence-specific DNA transalkylation; the first step of the DNA labelling process and by optimizing reaction conditions for fluorophore coupling via a click reaction. Three of 11 enzymes transalkylate DNA with the cofactor we tested (a readily prepared s-adenosyl-l-methionine analogue).


New Journal of Chemistry | 2009

Synthesis and photophysical characterization of chalcogen substituted BODIPY dyes

Eduard Fron; Eduardo Coutino-Gonzalez; Lesley Pandey; Michel Sliwa; Mark Van der Auweraer; Frans C. De Schryver; Joice Thomas; Zeyuan Dong; Volker Leen; Mario Smet; Wim Dehaen; Tom Vosch

Synthetic details and stationary and time-resolved photophysical properties of five BODIPY derivatives containing chalcogen atoms are presented. The photophysical data are compared to those of a chlorine atom containing BODIPY, acting as a reference. A strong impact in the HOMO–LUMO transition energy is achieved via nucleophilic substitution with chalcogen based units. Going from oxygen to tellurium a bathochromic shift in both absorption and emission spectra from the green to the near infrared region was observed. By employing fluorescence single photon timing experiments in two solvents of different polarity, the excited state dynamics and their solvent dependence indicate the presence of a mechanism involving a photoinduced charge transfer that dramatically affects the optical radiative processes of these derivatives.


Journal of Physical Chemistry A | 2014

8-HaloBODIPYs and Their 8-(C, N, O, S) Substituted Analogues: Solvent Dependent UV–Vis Spectroscopy, Variable Temperature NMR, Crystal Structure Determination, and Quantum Chemical Calculations

Noël Boens; Lina Wang; Volker Leen; Peijia Yuan; Bram Verbelen; Wim Dehaen; Mark Van der Auweraer; Wim D. De Borggraeve; Luc Van Meervelt; Jeroen Jacobs; David Beljonne; Claire Tonnelé; Roberto Lazzaroni; Maria J. Ruedas-Rama; Angel Orte; Luis Crovetto; Eva M. Talavera; Jose M. Alvarez-Pez

The UV-vis electronic absorption and fluorescence emission properties of 8-halogenated (Cl, Br, I) difluoroboron dipyrrin (or 8-haloBODIPY) dyes and their 8-(C, N, O, S) substituted analogues are reported. The nature of the meso-substituent has a significant influence on the spectral band positions, the fluorescence quantum yields, and lifetimes. As a function of the solvent, the spectral maxima of all the investigated dyes are located within a limited wavelength range. The spectra of 8-haloBODIPYs display the narrow absorption and fluorescence emission bands and the generally quite small Stokes shifts characteristic of classic difluoroboron dipyrrins. Conversely, fluorophores with 8-phenylamino (7), 8-benzylamino (8), 8-methoxy (9), and 8-phenoxy (10) groups emit in the blue range of the visible spectrum and generally have larger Stokes shifts than common BODIPYs, whereas 8-(2-phenylethynyl)BODIPY (6) has red-shifted spectra compared to ordinary BODIPY dyes. Fluorescence lifetimes for 6, 8, and 10 have been measured for a large set of solvents and the solvent effect on their absorption and emission maxima has been analyzed using the generalized Catalán solvent scales. Restricted rotation about the C8-N bond in 7 and 8 has been observed via temperature dependent (1)H NMR spectroscopy, whereas for 10 the rotation about the C8-O bond is not hindered. The crystal structure of 8 demonstrates that the short C8-N bond has a significant double character and that this N atom exhibits a trigonal planar geometry. The crystal structure of 10 shows a short C8-O bond and an intramolecular C-H···π interaction. Quantum-chemical calculations have been performed to assess the effect of the meso-substituent on the spectroscopic properties.


Chemistry-an Asian Journal | 2010

Synthesis, spectroscopy, crystal structure determination, and quantum chemical calculations of BODIPY dyes with increasing conformational restriction and concomitant red-shifted visible absorption and fluorescence spectra.

Volker Leen; Wenwu Qin; Wensheng Yang; Jie Cui; Chan Xu; Xiaoliang Tang; Weisheng Liu; Koen Robeyns; Luc Van Meervelt; David Beljonne; Roberto Lazzaroni; Claire Tonnelé; Noël Boens; Wim Dehaen

Starting from the conformationally unconstrained compound 3,5-di-(2-bromophenoxy)-4,4-difluoro-8-(4-methylphenyl)-4-bora-3a,4a-diaza-s-indacene (1), two BODIPY dyes (2 and 3) with increasingly rigid conformations were synthesized in outstanding total yields through palladium catalyzed intramolecular benzofuran formation. Restricted bond rotation of the phenoxy fragments leads to dyes 2 and 3, which absorb and fluoresce more intensely at longer wavelengths relative to the unconstrained dye 1. Reduction of the conformational flexibility in 2 and 3 leads to significantly higher fluorescence quantum yields compared to those of 1. X-ray diffraction analysis shows the progressively more extended planarity of the chromophore in line with the increasing conformational restriction in the series 1-->2-->3, which explains the larger red shifts of the absorption and emission spectra. These conclusions are confirmed by quantum chemical calculations of the lowest electronic excitations in 1-3 and dyes of related chemical structures. The effect of the molecular structure on the visible absorption and fluorescence emission properties of 1-3 has been examined as a function of solvent by means of the new, generalized treatment of the solvent effect (J. Phys. Chem. B 2009, 113, 5951-5960). Solvent polarizability is the primary factor responsible for the small solvent-dependent shifts of the visible absorption and fluorescence emission bands of these dyes.


Chemistry: A European Journal | 2011

Oligo(p‐phenylene ethynylene)–BODIPY Derivatives: Synthesis, Energy Transfer, and Quantum‐Chemical Calculations

Shouchun Yin; Volker Leen; Carine Jackers; David Beljonne; Bernard Van Averbeke; Mark Van der Auweraer; Noël Boens; Wim Dehaen

The synthesis and energy-transfer properties of a series of oligo(p-phenylene ethynylene)-BODIPY (OPEB) cassettes are reported. A series of oligo(p-phenylene ethynylene)s (OPEs) with different conjugated chain lengths as energy donor subunit in the energy-transfer system were capped at both ends with BODIPY chromophores as energy-acceptor subunits. The effect of the conjugated chain of OPEs on energy transfer in the OPEB cassettes was investigated by UV/Vis and fluorescence spectroscopy and modeling. With increasing number n of phenyl acetylene units (n=1-7), the absorption and emission maxima of OPEn are bathochromically shifted. In the OPEBn analogues, the absorption maximum assigned to the BODIPY moieties is independent of the length of the OPE spacer. However, the relative absorption intensity of the BODIPY band decreases when the number of phenyl acetylene units is increased. The emission spectra of OPEBn are dominated by a band peaking at 613 nm, corresponding to emission of the BODIPY moieties, regardless of whether excitation is at 420 or 550 nm. Furthermore, a very small band is observed with a maximum between 450 and 500 nm, and its intensity relative to that of the BODIPY emission increases with increasing n, that is, the excited state of OPE subunits is efficiently quenched in OPEBn by energy transfer to the BODIPY moieties. Energy transfer (ET) from OPEn to BODIPY in OPEBn is very efficient (all Φ(ET) values are greater than 98 %) and only slightly decreases with increasing length of the OPE units. These results are supported by theoretical studies that show very high energy transfer efficiency (Φ(ET) >75 %) from the OPE spacer to the BODIPY end-groups for chains with up to 15-20 units.

Collaboration


Dive into the Volker Leen's collaboration.

Top Co-Authors

Avatar

Wim Dehaen

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar

Noël Boens

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar

Mark Van der Auweraer

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Bram Verbelen

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar

Lina Wang

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jochem Deen

Katholieke Universiteit Leuven

View shared research outputs
Researchain Logo
Decentralizing Knowledge