Volker Strauss
Nycomed
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Volker Strauss.
Regulatory Toxicology and Pharmacology | 2012
Susanne N. Kolle; Tzutzuy Ramirez; Hennicke Kamp; Roland Buesen; Burkhard Flick; Volker Strauss; Bennard van Ravenzwaay
Most endocrine disruptors interact with hormone receptors or steroid biosynthesis and metabolism, thereby modifying the physiological function of endogenous hormones. Here, we present an alternative testing paradigm for detection of endocrine modes of action that replace and reduce animal testing through refinement. Receptor mediated endocrine effects were assessed using the yeast-based receptor-mediated transcriptional activation YES/YAS assays and effects on steroid hormone biosynthesis were assessed using the human cell line H295R in the steroidogenesis assay. In our testing paradigm we propose to complement the in vitro assays with a single in vivo repeated dose study in which plasma samples are analyzed for their metabolome profile in addition to classical parameters such as histopathology. The combination of these methods does not only contribute to refinement and reduction of animal testing, but also has significantly increased the efficient allocation of resources and allows for a sound assessment of the endocrine disruption potential of compounds. Thus, this proposal constitutes a potentially attractive alternative to EPAs Endocrine Disruptor Screening Program to identify mammalian, systemic endocrine modes of action. Data on 14 reference substances for which the in vitro YES/YAS and steroidogenesis assays and the in vivo metabolome analysis were performed to assess their putative endocrine modes of action are presented here.
Regulatory Toxicology and Pharmacology | 2011
Steffen Schneider; Wolfgang Kaufmann; Volker Strauss; Bennard van Ravenzwaay
Feasibility of the ILSI-HESI (ACSA) extended one-generation protocol was tested with vinclozolin (dietary 0, 4, 20, 100mg/kg/day). Parental Wistar rats (n=25/sex/dose) were dosed pre-mating (males 4, females 2 weeks) through F1 offspring weaning (postnatal day PND21); F1 dosing continued through PND70. At PND21, 3 subsets (each 1 pup/sex/litter) were selected for neurotoxicology (functional observational battery, motor activity, neuropathology), clinical pathology (hematology, clinical chemistry, urinalysis, thyroid hormone assay) (subsets 1a, 1b; each n=10/sex/dose), immunotoxicology (IgM) SRBC antibody response and natural killer cell assays (subset 2; n=25/sex/dose), and estrus cycle (subset 3; n=25/dose). Vinclozolin reduced parental and offspring bodyweight and prostate, seminal vesicles and epididymides weight, and increased adrenal weight/induced adrenal cortical hypertrophy at 100mg/kg. Mating, fertility, gestation and lactation were unaffected. At 20 and 100mg/kg, F1 males had reduced anogenital distance and retained areolae; at 100mg/kg only, there was hypospadias, purulent prostatitis and seminal vesicle inflammation with atrophy, and Leydig cell hyperplasia, and in F1 females accelerated vaginal opening. These effects are consistent with vinclozolins known anti-androgenic developmental effects. Neuro- and immunotoxicology tests were unaffected. F1 Only T4 was reduced at 20 and 100mg/kg. The overall sensitivity of the extended one-generation protocol is comparable to or even greater than the current two-generation study. Thus it reduces animal use while maintaining or enhancing information for risk assessment.
Food and Chemical Toxicology | 2012
Amechi Chukwudebe; Laura Privalle; Andrew Reed; Christine Wandelt; Daniela Contri; Martina Dammann; Sibylle Groeters; Uwe Kaspers; Volker Strauss; Bennard van Ravenzwaay
This subchronic duration feeding study evaluated the nutritional and health status of rats fed diets containing CV127 at incorporation levels of 11% and 33%. For control comparisons, rats were also exposed to similar incorporation levels of the near isogenic conventional soybean variety (Conquista) and two other conventional soybean varieties (Monsoy, Coodetec). In spite of phenotypic differences among these four soybean varieties, there were no quantitative differences in their respective proximate and other compositional properties, including proteins, amino acids, antinutrients and nutritional cofactors. All diets were prepared by blending the respective processed soybean meal with ground Kliba maintenance meal at high (33%) and low (11%) incorporation levels, and the blended diets were fed to Wistar rats for about 91 days. Although there were some isolated parameters indicating statistically significant changes, these lacked consistency and a plausible mechanism and were thus assessed to be incidental. The totality of results demonstrate that CV127 soybeans are similar with respect to their nutritional value and systemic effects as its near isogenic conventional counterpart, as well as other conventional soybean varieties. Hence, introduction of AHAS gene into soybeans does not substantially alter its compositional properties, nor adversely affect its nutritional or safety status to mammals.
Birth Defects Research Part B-developmental and Reproductive Toxicology | 2013
Maria Cecilia Rey Moreno; Karma C. Fussell; Sibylle Gröters; Steffen Schneider; Volker Strauss; Stefan Stinchcombe; Ivana Fegert; Mariana Matera Veras; Bennard van Ravenzwaay
Epoxiconazole (CAS-No. 133855-98-8) was recently shown to cause both a marked depletion of maternal estradiol blood levels and a significantly increased incidence of late fetal mortality when administered to pregnant rats throughout gestation (GD 7-18 or 21); estradiol supplementation prevented this epoxiconazole effect in rats (Stinchcombe et al., 2013), indicating that epoxiconazole-mediated estradiol depletion is a critical key event for induction of late fetal resorptions in rats. For further elucidation of the mode of action, the placentas from these modified prenatal developmental toxicity experiments with 23 and 50 mg/kg bw/d epoxiconazole were subjected to a detailed histopathological examination. This revealed dose-dependent placental degeneration characterized by cystic dilation of maternal sinuses in the labyrinth, leading to rupture of the interhemal membrane. Concomitant degeneration occurred in the trophospongium. Both placentas supporting live fetuses and late fetal resorptions were affected; the highest degree of severity was observed in placentas with late resorptions. Placental degeneration correlated with a severe decline in maternal serum estradiol concentration. Supplementation with 0.5 and 1.0 μg of the synthetic estrogen estradiol cyclopentylpropionate per day reduced the severity of the degeneration in placentas with live fetuses. The present study demonstrates that both the placental degeneration and the increased incidence of late fetal resorptions are due to decreased levels of estrogen, since estrogen supplementation ameliorates the former and abolishes the latter.
Birth Defects Research Part B-developmental and Reproductive Toxicology | 2013
Stefan Stinchcombe; Steffen Schneider; Ivana Fegert; Maria Cecilia Rey Moreno; Volker Strauss; Sibylle Gröters; Eric Fabian; Karma C. Fussell; Geoffrey H. Pigott; Bennard van Ravenzwaay
Epoxiconazole (EPX; CAS-No. 133855-98-8) is a triazole class-active substance of plant protection products. At a dose level of 50 mg/kg bw/day, it causes a significantly increased incidence of late fetal mortality when administered to pregnant rats throughout gestation (gestation day [GD] 7-18 or 21), as reported previously (Taxvig et al., 2007, 2008) and confirmed in these studies. Late fetal resorptions occurred in the presence of significant maternal toxicity such as clear reduction of corrected body weight gain, signs of anemia, and, critically, a marked reduction of maternal estradiol plasma levels. Furthermore, estradiol supplementation at dose levels of 0.5 or 1.0 μg/animal/day of estradiol cyclopentylpropionate abolished the EPX-mediated late fetal resorptions. No increased incidences of external malformations were found in rats cotreated with 50 mg/kg bw/day EPX and estradiol cyclopentylpropionate, indicating that the occurrence of malformations was not masked by fetal mortality under the study conditions. Overall, the study data indicate that fetal mortality observed in rat studies with EPX is not the result of direct fetal toxicity but occurs indirectly via depletion of maternal estradiol levels. The clarification of the human relevance of the estrogen-related mechanism behind EPX-mediated late fetal resorptions in rats warrants further studies. In particular, this should involve investigation of the placenta (Rey Moreno et al., 2013), since it is the materno-fetal interface and crucial for fetal maintenance. The human relevance is best addressed in a species which is closer to humans with reference to placentation and hormonal regulation of pregnancy, such as the guinea pig (Schneider et al., 2013).
Regulatory Toxicology and Pharmacology | 2016
Nigel P. Moore; Manon Beekhuijzen; Peter J. Boogaard; Jennifer E. Foreman; Colin M. North; Christine Palermo; Steffen Schneider; Volker Strauss; Bennard van Ravenzwaay; Alan Poole
The extended one-generation reproduction toxicity study (EOGRTS; OECD test guideline 433) is a new and technically complex design to evaluate the putative effects of chemicals on fertility and development, including effects upon the developing nervous and immune systems. In addition to offering a more comprehensive assessment of developmental toxicity, the EOGRTS offers important improvements in animal welfare through reduction and refinement in a modular study design. The challenge to the practitioner is to know how the modular aspects of the study should be triggered on the basis of prior knowledge of a particular chemical, or on earlier findings in the EOGRTS itself, requirements of specific regulatory frameworks notwithstanding. The purpose of this document is to offer guidance on science-based triggers for these extended evaluations.
Birth Defects Research Part B-developmental and Reproductive Toxicology | 2013
Steffen Schneider; Thomas Hofmann; Stefan Stinchcombe; Maria Cecilia Rey Moreno; Ivana Fegert; Volker Strauss; Sibylle Gröters; Eric Fabian; Jutta Thiaener; Karma C. Fussell; Bennard van Ravenzwaay
Epoxiconazole, a triazole-based fungicide, was tested in toxicokinetic, prenatal and pre-postnatal toxicity studies in guinea pigs, following oral (gavage) administration at several dose levels (high dose: 90 mg/kg body weight per day). Maternal toxicity was evidenced by slightly increased abortion rates and by histopathological changes in adrenal glands, suggesting maternal stress. No compound-related increase in the incidence of malformations or variations was observed in the prenatal study. In the pre-postnatal study, epoxiconazole did not adversely affect gestation length, parturition, or postnatal growth and development. Administration of epoxiconazole did not alter circulating estradiol levels. Histopathological examination of the placentas did not reveal compound-related effects. The results in guinea pigs are strikingly different to those observed in pregnant rats, in which maternal estrogen depletion, pathological alteration of placentas, increased gestation length, late fetal death, and dystocia were observed after administration of epoxiconazole. In the studies reported here, analysis of maternal plasma concentrations and metabolism after administration of radiolabeled epoxiconazole demonstrated that the different results in rats and guinea pigs were not due to different exposures of the animals. A comprehensive comparison of hormonal regulation of pregnancy and birth in murid rodents and primates indicates that the effects on pregnancy and parturition observed in rats are not applicable to humans. In contrast, the pregnant guinea pig shares many similarities to pregnant humans regarding hormonal regulation and is therefore considered to be a suitable species for extrapolation of related effects to humans.
Archives of Toxicology | 2017
Steffen Schneider; Karma C. Fussell; Stephanie Melching-Kollmuss; Roland Buesen; Sibylle Gröters; Volker Strauss; Xiaoqi Jiang; Bennard van Ravenzwaay
The current investigation examines whether combined exposure to three anti-androgens (flutamide, prochloraz, vinclozolin) result in interference with endocrine homeostasis when applied at very low dose levels, and whether the results of combined exposure are more pronounced than to the individual compounds. A pre–post-natal in vivo study design was chosen with more parameters than regulatory testing protocols require (additional endpoints addressing hormone levels, morphology and histopathological examinations). Dose levels were chosen to represent the lowest observed adverse effect level (LOAEL), the no observed adverse effect level (NOAEL), and the acceptable daily intake for each individual substance. Anti-androgenic changes were observable at the effect level (LOAEL) but not at lower exposures. Nipple/areola counts appeared to be a sensitive measure of effect, in addition to male sex organ weights at sexual maturation, and finally gross findings. The results indicate the absence of evidence for effects at low or very low dose levels. No (adverse) effects were seen at the NOAEL dose. A non-monotonic dose–response relationship was not evident. Combined exposure at LOAEL level resulted in enhanced responses for anogenital index, number of areolas/nipples, delayed preputial separation and reduced ventral prostate weight in comparison to the individual compounds.
Experimental and Toxicologic Pathology | 2010
Volker Strauss; Thomas Wöhrmann; Ilona Frank; Ulrich Hübel; Jörg Luft; Gerd Bode; Paul-Georg Germann
In this paper, changes in serum levels of the cardiac biomarkers troponin I and the heart-type fatty acid-binding protein (H-FABP) following administration of a long-acting beta(2)-sympathicomimeticum (long-acting beta-agonist, LABA) to dogs were measured. We measured troponin I in dogs in a 4-week repeated-dose study with inhalative administration of formoterol (13microg/kgd) and a glucocorticoid/formoterol combination (143/16microg/kgd). The medians of troponin I increased within 3 days in both groups, far beyond the cut-off level (0.1microg/L), but returned to baseline levels on study day 9. The increase was more pronounced in the formoterol-only group (3.29microg/L) compared to the glucocorticoid/formoterol combination group (1.32microg/L). In a second study, we measured serum troponin I as well as serum H-FABP levels in several samples over 7 days in dogs, receiving a single inhalative dose of a glucocorticoid/formoterol combination (120/12mug/kgd). The median of the troponin I concentration increased above the cut-off level within 2h and that of H-FABP within 4h. The medians of both parameters were temporarily above the cut-off levels even on study day 7. Both studies were conducted according to national animal welfare guidelines. To our knowledge, this is the first report that shows a corresponding increase of troponin I and H-FABP in dogs treated with formoterol. Both parameters are more sensitive in detecting a drug-induced cardiac injury compared to total LDH, total CK as well as CK MB activity. However, it is recommended to take at least three blood samples per day to assess a temporary increase of troponin I.
Toxicology Mechanisms and Methods | 2017
Volker Strauss; Maria Cecilia Rey Moreno; Jeanette Vogt; Martina Dammann; Steffen Schneider; Sibylle Gröters; Bennard van Ravenzwaay
Abstract Several insecticides, chemicals, and drugs are known to inhibit acetylcholinesterase (AChE) activity, responsible for the cleavage of the neurotransmitter acetylcholine. The administration of AChE inhibitors leads to typical parasympathomimetic (toxic) symptoms in rats. In order to differentiate between compounds acting in various regions of the brain or in peripheral nerves, regulatory authorities demand the measurement of AChE activity in different compartments and the study of potential toxicity at different developmental stages. In the present paper, instructions are given for the necropsy of various regions of the brain depending on rat age. Furthermore, a method validation procedure is described for measuring AChE in these parts of the brain as well as peripheral nerves, serum, and erythrocytes in juvenile, adolescent, and adult rats according to the US EPA method. All investigations were performed within the frame of a regulatory extended one-generation reproductive study (EOGRTS, OECD TG 443). AChE activity increases age dependently in parts of the forebrain (cortex, hippocampus, striatum, but decreases in the mid- and hindbrain (cerebellum, brain stem, medulla oblongata) as well as in peripheral nerves (heart, diaphragm, gastrocnemius muscle). Sex-dependent differences of the AChE activity occur after an age of 11 weeks. The implication of AChE measurement in different brain regions of various age groups is discussed regarding the assessment of AChE inhibitors.