Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Vonn Walter is active.

Publication


Featured researches published by Vonn Walter.


PLOS ONE | 2013

Molecular subtypes in head and neck cancer exhibit distinct patterns of chromosomal gain and loss of canonical cancer genes.

Vonn Walter; Xiaoying Yin; Matthew D. Wilkerson; Christopher R. Cabanski; Ni Zhao; Ying Du; Mei Kim Ang; Michele C. Hayward; Ashley H. Salazar; Katherine A. Hoadley; Karen J. Fritchie; Charles Sailey; Mark C. Weissler; William W. Shockley; Adam M. Zanation; Trevor Hackman; Leigh B. Thorne; William D. Funkhouser; Kenneth L. Muldrew; Andrew F. Olshan; Scott H. Randell; Fred A. Wright; Carol G. Shores; D. Neil Hayes

Head and neck squamous cell carcinoma (HNSCC) is a frequently fatal heterogeneous disease. Beyond the role of human papilloma virus (HPV), no validated molecular characterization of the disease has been established. Using an integrated genomic analysis and validation methodology we confirm four molecular classes of HNSCC (basal, mesenchymal, atypical, and classical) consistent with signatures established for squamous carcinoma of the lung, including deregulation of the KEAP1/NFE2L2 oxidative stress pathway, differential utilization of the lineage markers SOX2 and TP63, and preference for the oncogenes PIK3CA and EGFR. For potential clinical use the signatures are complimentary to classification by HPV infection status as well as the putative high risk marker CCND1 copy number gain. A molecular etiology for the subtypes is suggested by statistically significant chromosomal gains and losses and differential cell of origin expression patterns. Model systems representative of each of the four subtypes are also presented.


PLOS ONE | 2012

Differential Pathogenesis of Lung Adenocarcinoma Subtypes Involving Sequence Mutations, Copy Number, Chromosomal Instability, and Methylation

Matthew D. Wilkerson; Xiaoying Yin; Vonn Walter; Ni Zhao; Christopher R. Cabanski; Michele C. Hayward; C. Ryan Miller; Mark A. Socinski; Alden M. Parsons; Leigh B. Thorne; Benjamin E. Haithcock; Nirmal K. Veeramachaneni; William K. Funkhouser; Scott H. Randell; Philip S. Bernard; Charles M. Perou; D. Neil Hayes

Background Lung adenocarcinoma (LAD) has extreme genetic variation among patients, which is currently not well understood, limiting progress in therapy development and research. LAD intrinsic molecular subtypes are a validated stratification of naturally-occurring gene expression patterns and encompass different functional pathways and patient outcomes. Patients may have incurred different mutations and alterations that led to the different subtypes. We hypothesized that the LAD molecular subtypes co-occur with distinct mutations and alterations in patient tumors. Methodology/Principal Findings The LAD molecular subtypes (Bronchioid, Magnoid, and Squamoid) were tested for association with gene mutations and DNA copy number alterations using statistical methods and published cohorts (n = 504). A novel validation (n = 116) cohort was assayed and interrogated to confirm subtype-alteration associations. Gene mutation rates (EGFR, KRAS, STK11, TP53), chromosomal instability, regional copy number, and genomewide DNA methylation were significantly different among tumors of the molecular subtypes. Secondary analyses compared subtypes by integrated alterations and patient outcomes. Tumors having integrated alterations in the same gene associated with the subtypes, e.g. mutation, deletion and underexpression of STK11 with Magnoid, and mutation, amplification, and overexpression of EGFR with Bronchioid. The subtypes also associated with tumors having concurrent mutant genes, such as KRAS-STK11 with Magnoid. Patient overall survival, cisplatin plus vinorelbine therapy response and predicted gefitinib sensitivity were significantly different among the subtypes. Conclusions/ Significance The lung adenocarcinoma intrinsic molecular subtypes co-occur with grossly distinct genomic alterations and with patient therapy response. These results advance the understanding of lung adenocarcinoma etiology and nominate patient subgroups for future evaluation of treatment response.


Clinical Cancer Research | 2014

HEDGEHOG-GLI signaling inhibition suppresses tumor growth in squamous lung cancer

Lingling Huang; Vonn Walter; D. Neil Hayes; Mark W. Onaitis

Purpose: Lung squamous cell carcinoma (LSCC) currently lacks effective targeted therapies. Previous studies reported overexpression of Hedgehog (HH)–GLI signaling components in LSCC. However, they addressed neither the tumor heterogeneity nor the requirement for HH–GLI signaling. Here, we investigated the role of HH–GLI signaling in LSCC, and studied the therapeutic potential of HH–GLI suppression. Experimental Design: Gene expression datasets of two independent LSCC patient cohorts were analyzed to study the activation of HH–GLI signaling. Four human LSCC cell lines were examined for HH–GLI signaling components. Cell proliferation and apoptosis were assayed in these cells after blocking the HH–GLI pathway by lentiviral-shRNA knockdown or small-molecule inhibitors. Xenografts in immunodeficient mice were used to determine the in vivo efficacy of GLI inhibitor GANT61. Results: In both cohorts, activation of HH–GLI signaling was significantly associated with the classical subtype of LSCC. In cell lines, genetic knockdown of Smoothened (SMO) produced minor effects on cell survival, whereas GLI2 knockdown significantly reduced proliferation and induced extensive apoptosis. Consistently, the SMO inhibitor GDC-0449 resulted in limited cytotoxicity in LSCC cells, whereas the GLI inhibitor GANT61 was very effective. Importantly, GANT61 demonstrated specific in vivo antitumor activity in xenograft models of GLI+ cell lines. Conclusion: Our studies demonstrate an important role for GLI2 in LSCC, and suggest GLI inhibition as a novel and potent strategy to treat a subset of patients with LSCC. Clin Cancer Res; 20(6); 1566–75. ©2014 AACR.


Nucleic Acids Research | 2014

Integrated RNA and DNA sequencing improves mutation detection in low purity tumors

Matthew D. Wilkerson; Christopher R. Cabanski; Wei Sun; Katherine A. Hoadley; Vonn Walter; Lisle E. Mose; Melissa A. Troester; Peter S. Hammerman; Joel S. Parker; Charles M. Perou; D. Neil Hayes

Identifying somatic mutations is critical for cancer genome characterization and for prioritizing patient treatment. DNA whole exome sequencing (DNA-WES) is currently the most popular technology; however, this yields low sensitivity in low purity tumors. RNA sequencing (RNA-seq) covers the expressed exome with depth proportional to expression. We hypothesized that integrating DNA-WES and RNA-seq would enable superior mutation detection versus DNA-WES alone. We developed a first-of-its-kind method, called UNCeqR, that detects somatic mutations by integrating patient-matched RNA-seq and DNA-WES. In simulation, the integrated DNA and RNA model outperformed the DNA-WES only model. Validation by patient-matched whole genome sequencing demonstrated superior performance of the integrated model over DNA-WES only models, including a published method and published mutation profiles. Genome-wide mutational analysis of breast and lung cancer cohorts (n = 871) revealed remarkable tumor genomics properties. Low purity tumors experienced the largest gains in mutation detection by integrating RNA-seq and DNA-WES. RNA provided greater mutation signal than DNA in expressed mutations. Compared to earlier studies on this cohort, UNCeqR increased mutation rates of driver and therapeutically targeted genes (e.g. PIK3CA, ERBB2 and FGFR2). In summary, integrating RNA-seq with DNA-WES increases mutation detection performance, especially for low purity tumors.


Cancer Research | 2014

BRG1/SMARCA4 Inactivation Promotes Non-Small Cell Lung Cancer Aggressiveness by Altering Chromatin Organization

Tess Orvis; Austin J. Hepperla; Vonn Walter; Shujie Song; Jeremy M. Simon; Joel S. Parker; Matthew D. Wilkerson; Nisarg Desai; Michael B. Major; D. Neil Hayes; Ian J. Davis; Bernard E. Weissman

SWI/SNF chromatin remodeling complexes regulate critical cellular processes, including cell-cycle control, programmed cell death, differentiation, genomic instability, and DNA repair. Inactivation of this class of chromatin remodeling complex has been associated with a variety of malignancies, including lung, ovarian, renal, liver, and pediatric cancers. In particular, approximately 10% of primary human lung non-small cell lung cancers (NSCLC) display attenuations in the BRG1 ATPase, a core factor in SWI/SNF complexes. To evaluate the role of BRG1 attenuation in NSCLC development, we examined the effect of BRG1 silencing in primary and established human NSCLC cells. BRG1 loss altered cellular morphology and increased tumorigenic potential. Gene expression analyses showed reduced expression of genes known to be associated with progression of human NSCLC. We demonstrated that BRG1 losses in NSCLC cells were associated with variations in chromatin structure, including differences in nucleosome positioning and occupancy surrounding transcriptional start sites of disease-relevant genes. Our results offer direct evidence that BRG1 attenuation contributes to NSCLC aggressiveness by altering nucleosome positioning at a wide range of genes, including key cancer-associated genes.


Clinical Cancer Research | 2011

High XRCC1 Protein Expression Is Associated with Poorer Survival in Patients with Head and Neck Squamous Cell Carcinoma

Mei-Kim Ang; Mihir R. Patel; Xiaoying Yin; Sneha Sundaram; Karen J. Fritchie; Ni Zhao; Yufeng Liu; Alex J. Freemerman; Matthew D. Wilkerson; Vonn Walter; Mark C. Weissler; William W. Shockley; Marion E. Couch; Adam M. Zanation; Trevor Hackman; Bhishamjit S. Chera; Stephen L. Harris; C. Ryan Miller; Leigh B. Thorne; Michele C. Hayward; William K. Funkhouser; Andrew F. Olshan; Carol G. Shores; Liza Makowski; D. Neil Hayes

Purpose: We evaluated X-ray repair complementing defective repair in Chinese hamster cells 1 (XRCC1) protein in head and neck squamous cell carcinoma (HNSCC) patients in association with outcome. Experimental Design: XRCC1 protein expression was assessed by immunohistochemical (IHC) staining of pretreatment tissue samples in 138 consecutive HNSCC patients treated with surgery (n = 31), radiation (15), surgery and radiation (23), surgery and adjuvant chemoradiation (17), primary chemoradiation (51), and palliative measures (1). Results: Patients with high XRCC1 expression by IHC (n = 77) compared with patients with low XRCC1 expression (n = 60) had poorer median overall survival (OS; 41.0 months vs. OS not reached, P = 0.009) and poorer progression-free survival (28.0 months vs. 73.0 months, P = 0.031). This association was primarily due to patients who received chemoradiation (median OS of high- and low-XRCC1 expression patients, 35.5 months and not reached respectively, HR 3.48; 95% CI: 1.44–8.38; P = 0.006). In patients treated with nonchemoradiation modalities, there was no survival difference by XRCC1 expression. In multivariable analysis, high XRCC1 expression and p16INK4a-positive status were independently associated with survival in the overall study population (HR = 2.62; 95% CI: 1.52–4.52; P < 0.001 and HR = 0.21; 95% CI: 0.06–0.71; P = 0.012, respectively) and among chemoradiation patients (HR = 6.02; 95% CI: 2.36–15.37; P < 0.001 and HR = 0.26; 95% CI: 0.08–0.92, respectively; P = 0.037). Conclusions: In HNSCC, high XRCC1 protein expression is associated with poorer survival, particularly in patients receiving chemoradiation. Future validation of these findings may enable identification of HNSCC expressing patients who benefit from chemoradiation treatment. Clin Cancer Res; 17(20); 6542–52. ©2011 AACR.


Bioinformatics | 2011

DiNAMIC: a method to identify recurrent DNA copy number aberrations in tumors

Vonn Walter; Andrew B. Nobel; Fred A. Wright

Motivation: DNA copy number gains and losses are commonly found in tumor tissue, and some of these aberrations play a role in tumor genesis and development. Although high resolution DNA copy number data can be obtained using array-based techniques, no single method is widely used to distinguish between recurrent and sporadic copy number aberrations. Results: Here we introduce Discovering Copy Number Aberrations Manifested In Cancer (DiNAMIC), a novel method for assessing the statistical significance of recurrent copy number aberrations. In contrast to competing procedures, the testing procedure underlying DiNAMIC is carefully motivated, and employs a novel cyclic permutation scheme. Extensive simulation studies show that DiNAMIC controls false positive discoveries in a variety of realistic scenarios. We use DiNAMIC to analyze two publicly available tumor datasets, and our results show that DiNAMIC detects multiple loci that have biological relevance. Availability: Source code implemented in R, as well as text files containing examples and sample datasets are available at http://www.bios.unc.edu/research/genomic_software/DiNAMIC. Contact: [email protected]; [email protected] Supplementary information: Supplementary data are available at Bioinformatics online.


PLOS ONE | 2015

Combined Targeted DNA Sequencing in Non-Small Cell Lung Cancer (NSCLC) Using UNCseq and NGScopy, and RNA Sequencing Using UNCqeR for the Detection of Genetic Aberrations in NSCLC

Xiaobei Zhao; Anyou Wang; Vonn Walter; Nirali M. Patel; David A. Eberhard; Michele C. Hayward; Ashley H. Salazar; Heejoon Jo; Matthew G. Soloway; Matthew D. Wilkerson; Joel S. Parker; Xiaoying Yin; Guosheng Zhang; Marni B. Siegel; Gary B. Rosson; H. Shelton Earp; Norman E. Sharpless; Margaret L. Gulley; Karen E. Weck; D. Neil Hayes; Stergios J. Moschos

The recent FDA approval of the MiSeqDx platform provides a unique opportunity to develop targeted next generation sequencing (NGS) panels for human disease, including cancer. We have developed a scalable, targeted panel-based assay termed UNCseq, which involves a NGS panel of over 200 cancer-associated genes and a standardized downstream bioinformatics pipeline for detection of single nucleotide variations (SNV) as well as small insertions and deletions (indel). In addition, we developed a novel algorithm, NGScopy, designed for samples with sparse sequencing coverage to detect large-scale copy number variations (CNV), similar to human SNP Array 6.0 as well as small-scale intragenic CNV. Overall, we applied this assay to 100 snap-frozen lung cancer specimens lacking same-patient germline DNA (07–0120 tissue cohort) and validated our results against Sanger sequencing, SNP Array, and our recently published integrated DNA-seq/RNA-seq assay, UNCqeR, where RNA-seq of same-patient tumor specimens confirmed SNV detected by DNA-seq, if RNA-seq coverage depth was adequate. In addition, we applied the UNCseq assay on an independent lung cancer tumor tissue collection with available same-patient germline DNA (11–1115 tissue cohort) and confirmed mutations using assays performed in a CLIA-certified laboratory. We conclude that UNCseq can identify SNV, indel, and CNV in tumor specimens lacking germline DNA in a cost-efficient fashion.


Journal of Cerebral Blood Flow and Metabolism | 2011

Metabolic control of resting hemispheric cerebral blood flow is oxidative, not glycolytic

William J. Powers; Tom O. Videen; Joanne Markham; Vonn Walter; Joel S. Perlmutter

Although the close regional coupling of resting cerebral blood flow (CBF) with both cerebral metabolic rate of oxygen (CMRO2) and cerebral metabolic rate of glucose (CMRglc) within individuals is well documented, there are few data regarding the coupling between whole brain flow and metabolism among different subjects. To investigate the metabolic control of resting whole brain CBF, we performed multivariate analysis of hemispheric CMRO2, CMRglc, and other covariates as predictors of resting CBF among 23 normal humans. The univariate analysis showed that only CMRO2 was a significant predictor of CBF. The final multivariate model contained two additional terms in addition to CMRO2: arterial oxygen content and oxygen extraction fraction. Notably, arterial plasma glucose concentration and CMRglc were not included in the final model. Our data demonstrate that the metabolic factor controlling hemispheric CBF in the normal resting brain is CMRO2 and that CMRglc does not make a contribution. Our findings provide evidence for compartmentalization of brain metabolism into a basal component in which CBF is coupled to oxygen metabolism and an activation component in which CBF is controlled by another mechanism.


Molecular Cancer Research | 2014

Gene silencing associated with SWI/SNF complex loss during NSCLC development.

Shujie Song; Vonn Walter; Mehmet Karaca; Ying Li; Christopher Bartlett; Dominic J. Smiraglia; Daniel W. Serber; Christopher D. Sproul; Christoph Plass; Jiren Zhang; D. Neil Hayes; Yanfang Zheng; Bernard E. Weissman

The SWI/SNF chromatin-remodeling complex regulates gene expression and alters chromatin structures in an ATP-dependent manner. Recent sequencing efforts have shown mutations in BRG1 (SMARCA4), one of two mutually exclusive ATPase subunits in the complex, in a significant number of human lung tumor cell lines and primary non–small cell lung carcinoma (NSCLC) clinical specimens. To determine how BRG1 loss fuels tumor progression in NSCLC, molecular profiling was performed after restoration of BRG1 expression or treatment with a histone deacetylase inhibitor or a DNA methyltransferase (DNMT) inhibitor in a BRG1-deficient NSCLC cells. Importantly, validation studies from multiple cell lines revealed that BRG1 reexpression led to substantial changes in the expression of CDH1, CDH3, EHF, and RRAD that commonly undergo silencing by other epigenetic mechanisms during NSCLC development. Furthermore, treatment with DNMT inhibitors did not restore expression of these transcripts, indicating that this common mechanism of gene silencing did not account for their loss of expression. Collectively, BRG1 loss is an important mechanism for the epigenetic silencing of target genes during NSCLC development. Implications: Inactivation of the SWI/SNF complex provides a novel mechanism to induce gene silencing during NSCLC development. Mol Cancer Res; 12(4); 560–70. ©2014 AACR.

Collaboration


Dive into the Vonn Walter's collaboration.

Top Co-Authors

Avatar

D. Neil Hayes

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar

Matthew D. Wilkerson

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar

Michele C. Hayward

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar

Xiaoying Yin

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar

Ying Du

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar

Ashley H. Salazar

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar

Joshua I. Warrick

Penn State Milton S. Hershey Medical Center

View shared research outputs
Top Co-Authors

Avatar

Ni Zhao

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar

Fred A. Wright

North Carolina State University

View shared research outputs
Top Co-Authors

Avatar

Christopher R. Cabanski

University of North Carolina at Chapel Hill

View shared research outputs
Researchain Logo
Decentralizing Knowledge