Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Vuong N. Bui is active.

Publication


Featured researches published by Vuong N. Bui.


Antiviral Research | 2012

Inactivation of high and low pathogenic avian influenza virus H5 subtypes by copper ions incorporated in zeolite-textile materials

Kunitoshi Imai; Haruko Ogawa; Vuong N. Bui; Hiroshi Inoue; Jiro Fukuda; Masayoshi Ohba; Yu Yamamoto; Kikuyasu Nakamura

The effect of cotton textiles containing Cu(2+) held by zeolites (CuZeo-textile) on the inactivation of H5 subtype viruses was examined. Allantoic fluid (AF) containing a virus (AF virus) (0.1 ml) was applied to the textile (3×3-cm), and incubated for a specific period at ambient temperature. After each incubation, 0.9 ml of culture medium was added followed by squeezing to recover the virus into the medium. The recovered virus was titrated using Madin-Darby canine kidney (MDCK) cells or 10-day-old embryonated chicken eggs. The highly pathogenic H5N1 and the low pathogenic H5N3 viruses were inactivated on the CuZeo-textile, even after short incubation. The titer of A/chicken/Yamaguchi/7/04 (H5N1) in MDCK cells and in eggs declined by >5.0 log(10) and 5.0 log(10), respectively, in 30 s. The titer of A/whooper swan/Hokkaido/1/08 (H5N1) in MDCK cells declined by 2.3 and 3.5 in 1 and 5 min, respectively. When A/whistling swan/Shimane/499/83 (H5N3) was treated on the CuZeo-textile for 10 min, the titer declined by >5.0 log(10) in MDCK cells and by >3.5 log(10) in eggs. In contrast, no decrease in the titers was observed on cotton textiles containing zeolites alone (Zeo-textile). Neither cytopathic effects nor NP antigens were detected in MDCK cells inoculated with the H5N1 virus treated on the CuZeo-textile. The viral genes (H5, N1, M, and NP) were amplified from the virus treated on the CuZeo-textile by RT-PCR. The hemagglutinating activity of the CuZeo-textile treated virus was unaffected, indicating that virus-receptor interactions were maintained. Electron microscopic analysis revealed a small number of particles with morphological abnormalities in the H5N3 virus samples recovered immediately from the CuZeo-textile, while no particles were detectable in the 10-min treated sample, suggesting the rapid destruction of virions by the Cu(2+) in the CuZeo-textile. The loss of infectivity of H5 viruses could, therefore, be due to the destruction of virions by Cu(2+). Interestingly, CuCl(2) treatment (500 and 5000 μM) did not have an antiviral effect on the AF viruses (H5N1 and H5N3) even after 48 h of incubation, although the titer of the purified H5N3 virus treated with CuCl(2) declined greatly. The antiviral effect was inhibited by adding the AF to the purified H5N3 virus prior to the CuCl(2) treatment. The known antibacterial/antifungal activities of copper suggest that the CuZeo-textile can be applied at a high level of hygiene in both animals and humans.


Archives of Virology | 2013

Genetic diversity and mutation of avian paramyxovirus serotype 1 (Newcastle disease virus) in wild birds and evidence for intercontinental spread.

Andrew M. Ramey; Andrew B. Reeves; Haruko Ogawa; Hon S. Ip; Kunitoshi Imai; Vuong N. Bui; Emi Yamaguchi; Nikita Y. Silko; Claudio L. Afonso

Avian paramyxovirus serotype 1 (APMV-1), or Newcastle disease virus, is the causative agent of Newcastle disease, one of the most economically important diseases for poultry production worldwide and a cause of periodic epizootics in wild birds in North America. In this study, we examined the genetic diversity of APMV-1 isolated from migratory birds sampled in Alaska, Japan, and Russia and assessed the evidence for intercontinental virus spread using phylogenetic methods. Additionally, we predicted viral virulence using deduced amino acid residues for the fusion protein cleavage site and estimated mutation rates for the fusion gene of class I and class II migratory bird isolates. All 73 isolates sequenced as part of this study were most closely related to virus genotypes previously reported for wild birds; however, five class II genotype I isolates formed a monophyletic clade exhibiting previously unreported genetic diversity, which met criteria for the designation of a new sub-genotype. Phylogenetic analysis of wild-bird isolates provided evidence for intercontinental virus spread, specifically viral lineages of APMV-1 class II genotype I sub-genotypes Ib and Ic. This result supports migratory bird movement as a possible mechanism for the redistribution of APMV-1. None of the predicted deduced amino acid motifs for the fusion protein cleavage site of APMV-1 strains isolated from migratory birds in Alaska, Japan, and Russia were consistent with those of previously identified virulent viruses. These data therefore provide no support for these strains contributing to the emergence of avian pathogens. The estimated mutation rates for fusion genes of class I and class II wild-bird isolates were faster than those reported previously for non-virulent APMV-1 strains. Collectively, these findings provide new insight into the diversity, spread, and evolution of APMV-1 in wild birds.


Archives of Virology | 2013

H5N1 highly pathogenic avian influenza virus isolated from conjunctiva of a whooper swan with neurological signs

Vuong N. Bui; Haruko Ogawa; Lai H. Ngo; Tugsbaatar Baatartsogt; Lary N. B. Abao; Shio Tamaki; Keisuke Saito; Yukiko Watanabe; Jonathan A. Runstadler; Kunitoshi Imai

An H5N1 highly pathogenic avian influenza virus was isolated from conjunctiva of a whooper swan with neurological signs, which was captured during the latest H5N1 HPAI outbreak in Japan. The conjunctival swab contained a larger amount of the virus in comparison with the tracheal swab. This is the first report on H5N1 virus isolation from the conjunctiva of a wild bird, and the result may suggest the conjunctival swab to be a critical sample for H5N1 HPAIV detection in waterfowl. Phylogenetic analysis of the HA gene indicated that the virus falls into H5N1 clade 2.3.2.1.


Virology | 2012

H4N8 subtype avian influenza virus isolated from shorebirds contains a unique PB1 gene and causes severe respiratory disease in mice.

Vuong N. Bui; Haruko Ogawa; Xininigen; Kazuji Karibe; Kengo Matsuo; Sanaa S.A. Awad; Germaine L. Minoungou; Satoshi Yoden; Hiroaki Haneda; Lai H. Ngo; Shio Tamaki; Yu Yamamoto; Kikuyasu Nakamura; Keisuke Saito; Yukiko Watanabe; Jonathan A. Runstadler; Falk Huettman; G. M. Happ; Kunitoshi Imai

H4N8 subtype avian influenza viruses were isolated from shorebirds in eastern Hokkaido. All the isolates shared >99.7% nucleotide homology, and all the viral genes except for PB1 were highly related to those of A/red-necked stint/Australia/1/04. Thus, the isolates were regarded as PB1 reassortants. The most similar PB1 gene was identified in A/mallard/New Zealand/1615-17/04 (H4N6) with nucleotide homology of 90.9%. BALB/c mice intranasally inoculated with the H4N8 isolates developed severe respiratory disease, which eventually led to death in some mice. The virus was isolated from the lungs, and viral antigen was detected in the lungs with pneumonia. Other H4 subtype viruses tested did not cause any symptoms in mice, although these viruses were also isolated from the lungs. The PB2 gene of the H4N8 isolates contains K482R, but not the E627K or D701N substitutions. The PB1-F2 gene of the isolates consists of a 101-amino acid unique sequence, but lacks the N66S mutation.


Biochemical and Biophysical Research Communications | 2014

Influence of olive-derived hydroxytyrosol on the toll-like receptor 4-dependent inflammatory response of mouse peritoneal macrophages

Yohei Takeda; Vuong N. Bui; Kenta Iwasaki; Takaaki Kobayashi; Haruko Ogawa; Kunitoshi Imai

Macrophages play important roles in the host innate immune response and are involved in the onset of diseases caused by inflammation. Toll-like receptor 4 (TLR4)-mediated inflammatory responses of macrophages may be associated with diseases such as diabetes and diseases of the cardiovascular system. Hydroxytyrosol (HT) exerts strong antioxidant and anti-inflammatory effects and may be applied in the treatment of inflammatory diseases. In the present study conducted in vitro, we investigated the effects of the TLR4-dependent anti-inflammatory effect of HT on peritoneal macrophage of BALB/c mice. We show here that the elevated levels of iNOS gene expression and nitric oxide production induced by lipopolysaccharide (LPS) (0.25 μg/ml) were suppressed by HT (12.5 μg/ml). LPS-dependent NF-κB gene expression and phosphorylation of NF-κB were not affected by HT under these conditions. In contrast, the expression of TNF-α was significantly increased in the presence of LPS and HT. These results suggest that HT suppressed nitric oxide production by decreasing iNOS gene expression through a mechanism independent of the NF-κB signaling pathway. These novel findings suggest that the modulation by HT of the expression of genes involved in inflammation may involve multiple mechanisms.


Journal of Virological Methods | 2009

A latex agglutination test using a recombinant nucleoprotein for detection of antibodies against avian influenza virus.

M. Horie; Haruko Ogawa; K. Yamada; A. Hara; Vuong N. Bui; Sanaa S.A. Awad; R. Yoshikawa; Masaji Mase; Kenji Tsukamoto; Shigeo Yamaguchi; Kikuyasu Nakamura; Kunitoshi Imai

A latex agglutination test (LAT) was developed for detecting antibodies against avian influenza virus. The recombinant avian influenza virus nucleoprotein expressed in Escherichia coli was purified, coupled with latex beads, and used as an antigen for the LAT. The LAT was capable of detecting anti-avian influenza virus antibodies irrespective of the avian-influenza subtype, and in most cases, the results correlated with the results of an agar gel precipitation test (AGPT). However, in comparison with the AGPT, the LAT could detect the anti-avian influenza virus antibodies for a longer period of time after the infection. The nonspecific agglutination observed in uninfected chicken sera was resolved by pretreating the sera with dried chicken-liver powder for 1 h. The LAT is easy to perform, and even after considering the time required for pretreatment of the serum, the total time required for obtaining the results is reduced in comparison to the time required in the case of the AGPT. This easy and rapid LAT is considered to be useful for monitoring avian influenza virus infection in the field.


Infection, Genetics and Evolution | 2016

Limited evidence of intercontinental dispersal of avian paramyxovirus serotype 4 by migratory birds

Andrew B. Reeves; Rebecca L. Poulson; Denys Muzyka; Haruko Ogawa; Kunitoshi Imai; Vuong N. Bui; Jeffrey S. Hall; Mary J. Pantin-Jackwood; David E. Stallknecht; Andrew M. Ramey

Avian paramyxovirus serotype 4 (APMV-4) is a single stranded RNA virus that has most often been isolated from waterfowl. Limited information has been reported regarding the prevalence, pathogenicity, and genetic diversity of AMPV-4. To assess the intercontinental dispersal of this viral agent, we sequenced the fusion gene of 58 APMV-4 isolates collected in the United States, Japan and the Ukraine and compared them to all available sequences on GenBank. With only a single exception the phylogenetic clades of APMV-4 sequences were monophyletic with respect to their continents of origin (North America, Asia and Europe). Thus, we detected limited evidence for recent intercontinental dispersal of APMV-4 in this study.


Journal of General Virology | 2015

Characterization of mAbs to chicken anemia virus and epitope mapping on its viral protein, VP1.

Dai Q. Trinh; Haruko Ogawa; Vuong N. Bui; Tugsbaatar Baatartsogt; Mugimba Kahoza Kizito; Shigeo Yamaguchi; Kunitoshi Imai

Three (MoCAV/F2, MoCAV/F8 and MoCAV/F11) of four mouse mAbs established against the A2/76 strain of chicken anemia virus (CAV) showed neutralization activity. Immunoprecipitation showed a band at ~50 kDa in A2/76-infected cell lysates by neutralizing mAbs, corresponding to the 50 kDa capsid protein (VP1) of CAV, and the mAbs reacted with recombinant VP1 proteins expressed in Cos7 cells. MoCAV/F2 and MoCAV/F8 neutralized the 14 CAV strains tested, whereas MoCAV/F11 did not neutralize five of the strains, indicating distinct antigenic variation amongst the strains. In blocking immunofluorescence tests with the A2/76-infected cells, binding of MoCAV/F11 was not inhibited by the other mAbs. MoCAV/F2 inhibited the binding of MoCAV/F8 to the antigens and vice versa, suggesting that the two mAbs recognized the same epitope. However, mutations were found in different parts of VP1 of the escape mutants of each mAb: EsCAV/F2 (deletion of T89+A90), EsCAV/F8 (I261T) and EsCAV/F11 (E144G). Thus, the epitopes recognized by MoCAV/F2 and MoCAV/F8 seemed to be topographically close in the VP1 structure, suggesting that VP1 has at least two different neutralizing epitopes. However, MoCAV/F8 did not react with EsCAV/F2 or EsCAV/F8, suggesting that binding of MoCAV/F8 to the epitope requires coexistence of the epitope recognized by MoCAV/F2. In addition, MoCAV/F2, with a titre of 1 : 12 800 to the parent strain, neutralized EsCAV/F2 and EsCAV/F8 with low titres of 32 and 152, respectively. The similarity of the reactivity of MoCAV/F2 and MoCAV/F8 to VP1 may also suggest the existence of a single epitope recognized by these mAbs.


Archives of Virology | 2017

Characterization of cross-clade monoclonal antibodies against H5N1 highly pathogenic avian influenza virus and their application to the antigenic analysis of diverse H5 subtype viruses

Dulyatad Gronsang; Anh N. Bui; Dai Q. Trinh; Vuong N. Bui; Khong V. Nguyen; Minh X. Can; Tsutomu Omatsu; Tetsuya Mizutani; Makoto Nagai; Yukie Katayama; Rapeewan Thampaisarn; Haruko Ogawa; Kunitoshi Imai

H5N1 highly pathogenic avian influenza viruses (HPAIVs) are a threat to both animal and public health and require specific and rapid detection for prompt disease control. We produced three neutralizing anti-hemagglutinin (HA) monoclonal antibodies (mAbs) using two clades (2.2 and 2.5) of the H5N1 HPAIV isolated in Japan. Blocking immunofluorescence tests showed that each mAb recognized different epitopes; 3B5.1 and 3B5.2 mAbs against the clade 2.5 virus showed cross-clade reactivity to all 26 strains from clades 1, 2.2, 2.3.2.1, 2.3.2.1a, b, c and 2.3.4, suggesting that the epitope(s) recognized are conserved. Conversely, the 1G5 mAb against the clade 2.2 virus showed reactivity to only clades 1, 2.3.4 and 2.5 strains. An analysis of escape mutants, and some clades of the H5N1 viruses recognized by 3B5.1 and 3B5.2 mAbs, suggested that the mAbs bind to an epitope, including amino acid residues at position 162 in the HA1 protein (R162 and K162). Unexpectedly, however, when five Eurasian-origin H5 low-pathogenic AIV (LPAIV) strains with R162 were examined (EA-nonGsGD clade) as well as two American-origin strains (Am-nonGsGD clade), the mAb recognized only EA-nonGsGD clade strains. The R162 and K162 residues in the HA1 protein were highly conserved among 36 of the 43 H5N1 clades reported, including clades 2.3.2.1a and 2.3.2.1c that are currently circulating in Asia, Africa and Europe. The amino acid residues (158-PTIKRSYNNTNQE-170) in the HA1 protein are probably an epitope responsible for the cross-clade reactivity of the mAbs, considering the epitopes reported elsewhere. The 3B5.1 and 3B5.2 mAbs may be useful for the specific detection of H5N1 HPAIVs circulating in the field.


Journal of Veterinary Medical Science | 2016

High antiviral effects of hibiscus tea extract on the H5 subtypes of low and highly pathogenic avian influenza viruses

Tugsbaatar Baatartsogt; Vuong N. Bui; Dai Q. Trinh; Emi Yamaguchi; Dulyatad Gronsang; Rapeewan Thampaisarn; Haruko Ogawa; Kunitoshi Imai

Viral neuraminidase inhibitors are widely used as synthetic anti-influenza drugs for the prevention and treatment of influenza. However, drug-resistant influenza A virus variants, including H5N1 highly pathogenic avian influenza viruses (HPAIVs), have been reported. Therefore, the discovery of novel and effective antiviral agents is warranted. We screened the antiviral effects of 11 herbal tea extracts (hibiscus, black tea, tencha, rosehip tea, burdock tea, green tea, jasmine tea, ginger tea, lavender tea, rose tea and oak tea) against the H5N1 HPAIV in vitro. Among the tested extracts, only the hibiscus extract and its fractionated extract (frHibis) highly and rapidly reduced the titers of all H5 HPAIVs and low pathogenic AIVs (LPAIVs) used in the pre-treatment tests of Madin–Darby canine kidney (MDCK) cells that were inoculated with a mixture of the virus and the extract. Immunogold electron microscopy showed that anti-H5 monoclonal antibodies could not bind to the deformed H5 virus particles pretreated with frHibis. In post-treatment tests of MDCK cells cultured in the presence of frHibis after infection with H5N1 HPAIV, the frHibis inhibited viral replication and the expression of viral antigens and genes. Among the plants tested, hibiscus showed the most prominent antiviral effects against both H5 HPAIV and LPAIV.

Collaboration


Dive into the Vuong N. Bui's collaboration.

Top Co-Authors

Avatar

Haruko Ogawa

Obihiro University of Agriculture and Veterinary Medicine

View shared research outputs
Top Co-Authors

Avatar

Kunitoshi Imai

Obihiro University of Agriculture and Veterinary Medicine

View shared research outputs
Top Co-Authors

Avatar

Jonathan A. Runstadler

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Dai Q. Trinh

Obihiro University of Agriculture and Veterinary Medicine

View shared research outputs
Top Co-Authors

Avatar

Kikuyasu Nakamura

National Agriculture and Food Research Organization

View shared research outputs
Top Co-Authors

Avatar

Dai Quang Trinh

Obihiro University of Agriculture and Veterinary Medicine

View shared research outputs
Top Co-Authors

Avatar

Lai H. Ngo

Obihiro University of Agriculture and Veterinary Medicine

View shared research outputs
Top Co-Authors

Avatar

Sanaa S.A. Awad

Obihiro University of Agriculture and Veterinary Medicine

View shared research outputs
Top Co-Authors

Avatar

Tetsuya Mizutani

Tokyo University of Agriculture and Technology

View shared research outputs
Top Co-Authors

Avatar

Emi Yamaguchi

Obihiro University of Agriculture and Veterinary Medicine

View shared research outputs
Researchain Logo
Decentralizing Knowledge