Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where W. F. Zhang is active.

Publication


Featured researches published by W. F. Zhang.


Photosynthetica | 2016

Effects of water stress and rewatering on photosynthesis, root activity, and yield of cotton with drip irrigation under mulch

Honghai Luo; Yu Zhang; W. F. Zhang

Soil water deficit is a major limitation to agricultural productivity in arid regions. Leaf photosynthesis can quickly recover after rewatering and remains at a higher level for a longer period, thus increasing crop yield and water-use efficiency (WUE). We tested our hypothesis that leaf photosynthesis and root activity of water-stressed cotton (Gossypium hirsutum L.) plants could quickly recover after rewatering at a certain growth stage and it should not influence a cotton yield but increase WUE. Treatments in this study included two degrees of water stress: mild water stress (V1) and moderate water stress (V2) imposed at one of four cotton growth stages [i.e., S1 (from the full budding to early flowering stage), S2 (from early flowering to full flowering), S3 (from full flowering to full bolling), and S4 (from full bolling to boll-opening)]. The soil water content before and after the water stress was the same as that in the control treatment (CK, 70–75% of field capacity). Water deficit significantly reduced the leaf water potential, net photosynthetic rate, and stomatal conductance in cotton. The extent of the decline was greater in S2V2 treatment compared to others. Water deficit also reduced root activity, but the extent of inhibition varied in dependence on soil depth and duration. When plants were subjected to S1V1, the root activity in the 20–100 cm depth recovered rapidly and even exceeded CK one day after rewatering. An overcompensation response was observed for both photosynthesis and aboveground dry mass within one to three days after rewatering. Compared with the CK, S1V1 showed no significant effect on the yield but it increased total WUE and irrigation WUE. These results suggest that even a short-term water stress during the S1, S2 and S4 stages mitigated, with respect to the root activity, the negative effect of drought and enhanced leaf photosynthesis compensatory effects of rewatering in order to increase cotton WUE with drip irrigation under mulch in arid areas.


Parasites & Vectors | 2015

A broad-range survey of ticks from livestock in Northern Xinjiang: changes in tick distribution and the isolation of Borrelia burgdorferi sensu stricto

Yuanzhi Wang; Lu-Meng Mu; Ke Zhang; Mei-Hua Yang; Lin Zhang; Jing-Yun Du; Zhi-Qiang Liu; Yong-Xiang Li; Wei-Hua Lu; Chuangfu Chen; Yan Wang; Rong-Gui Chen; Jun Xu; Li Yuan; W. F. Zhang; Wei-Ze Zuo; Renfu Shao

BackgroundBorreliosis is highly prevalent in Xinjiang Uygur Autonomous Region, China. However, little is known about the presence of Borrelia pathogens in tick species in this region, in addition Borrelia pathogens have not been isolated from domestic animals.MethodsWe collected adult ticks from domestic animals at 19 sampling sites in 14 counties in northern Xinjiang from 2012 to 2014. Ticks were identified to species by morphology and were molecularly analysed by sequences of mitochondrial 16S rDNA gene; 4–8 ticks of each species at every sampling site were sequenced. 112 live adult ticks were selected for each species in every county, and were used to culture Borrelia pathogens; the genotypes were then determined by sequences of the 5S-23S rRNA intergenic spacer and the outer surface protein A (ospA) gene.ResultsA total of 5257 adult ticks, belonging to four genera and seven species, were collected. Compared with three decades ago, the abundance of the five common tick species during the peak ixodid tick season has changed. Certain tick species, such as Rhipicephalus turanicus (Rh. turanicus), was found at Jimusaer, Yining, Fukang, and Chabuchaer Counties for the first time. Additionally, the sequence analyses showed that the Hyalomma asiaticum (Hy. asiaticum), Haemaphysalis punctata (Ha. punctata), and Dermacentor marginatus (D. marginatus) that were collected from different sampling sites (≥3 sites) shared identical 16S rDNA sequences respectively. For the tick species that were collected from the same county, such as Hy. asiaticum from Shihezi County and Rh. turanicus from Yining County, their 16S rDNA sequences showed genetic diversity. In addition, sixteen Borrelia isolates were found in Hy. asiaticum, Ha. punctata, D. marginatus and Rh. turanicus, which infested cattle, sheep, horse and camel in Yining, Chabuchaer, Shihezi and Shawan Counties. All of the isolates were genetically identified as B. Burgdorferi sensu stricto.ConclusionsWarmer and wetter climate may have contributed to the altered distribution and abundance of the five most common ticks in northern Xinjiang. The genetic analyses showed that certain tick species, such as Hy. asiaticum or Rh. turanicus, exhibit genetic commonness or diversity. Additionally, this study is the first to isolate B. burgdorferi sensu stricto in Hy. asiaticum asiaticum, H. punctata, D. nuttalli and D. marginatus ticks from domestic animals. These ticks may transmit borreliosis among livestock.


Parasites & Vectors | 2015

The first detection of Rickettsia aeschlimannii and Rickettsia massiliae in Rhipicephalus turanicus ticks, in northwest China

Qingqing Wei; Li-Ping Guo; An-Dong Wang; Lu-Meng Mu; Ke Zhang; Chuangfu Chen; W. F. Zhang; Yuanzhi Wang

BackgroundRickettsia spp. belonging to the spotted fever group (SFG) cause infections in humans, domestic animals and wildlife. At least five SFG rickettsial species have been reported in China, but the occurrence of Rickettsia aeschlimannii and R. massiliae in ticks has not been characterized to date.FindingsA total of 114 adult ticks were collected from sheep in Yining County, Xinjiang Uygur Autonomous Region, in northwest China. The ticks were identified from morphological and molecular characteristics. All samples were examined by polymerase chain reaction (PCR), and six genetic markers were used to determine the Rickettsia spp. in the ticks. The ticks collected were identified as Rhipicephalus turanicus. Three different lineages of Rh. turanicus from Yining County were discovered on phylogenetic analysis of 16S rDNA and cox1. Twenty-one of the 114 samples (18.42%) were positive for rickettsial agents. Phylogenetic analysis based on six genetic sequences showed that three rickettsial species were present, namely: R. aeschlimannii (19.05%, 4/21), R. massiliae (19.05%, 4/21) and R. sibirica variant (61.90%, 13/21), which is clustered in the clade of R. sibirica subsp. sibirica.ConclusionsThis is the first description of R. aeschlimannii and R. massiliae in China. R. massiliae, R. aeschlimannii and R. sibirica variant co-circulate in the region of the China-Kazakhstan border, in northwest China. Rickettsial agents in ticks of the genus Rhipicephalus from migrant birds, transported livestock, wildlife and human beings should be investigated further in the region of the China–Central Asian border.


Photosynthetica | 2009

Leaf diaheliotropic movement can improve carbon gain and water use efficiency and not intensify photoinhibition in upland cotton (Gossypium hirsutum L.)

Yu Zhang; Hongzhi Zhang; G. Y. Feng; Jingshan Tian; W. F. Zhang

Upland cotton (Gossypium hirsutum L.) can move leaves to track the sun throughout the day, so-called leaf diaheliotropic movement. This paper reports an experimental test of the hypothesis that leaf diaheliotropic movement in upland cotton can enhance carbon assimilation and not increase the risk of stress from high energy load. In this experiment, cotton leaves were divided into two groups: one was that leaves could track the sun freely; another was that leaves were retained to the horizontal position. The diaheliotropic leaves recorded higher incident irradiance than the restrained ones, especially in the morning and late afternoon. Compared with restrained leaves, diaheliotropic leaves were generally warmer throughout the day. As expected, diaheliotropic leaves had significantly higher diurnal time courses of net photosynthetic rate (PN) than restrained leaves, except during 14:00–18:00 of the local time. Higher instantaneous water-use efficiency (WUE) was observed in diaheliotropic leaves in the early morning and late afternoon than in the restrained leaves. During the given day, diaheliotropic and restrained leaves had similar diurnal time courses of recovery of maximal quantum yield of PSII photochemistry (Fv/Fm). Diaheliotropic leaves recorded lower or similar photochemical quenching coefficient (qp) than restrained leaves did throughout the day. These results suggest that cotton leaf diaheliotropic movement can improve carbon gain and water use efficiency and not intensify photoinhibition.


Photosynthetica | 2016

Photorespiration and photoinhibition in the bracts of cotton under water stress

Chao Zhang; Dongxia Zhan; Honghai Luo; Yu Zhang; W. F. Zhang

Gas exchange and chlorophyll fluorescence parameters of PSII were analyzed in the bracts and leaves of cotton plants after anthesis. Photosynthetic activity and photorespiration were measured in the leaves and bracts of cotton grown under either normal or reduced water-saving drip irrigation. The photosynthetic performance, amount of chlorophyll and Rubisco, and net photosynthesis were greater in the bracts than that in the leaves under water stress. The actual photochemical efficiency of PSII decreased in both the bracts and leaves after anthesis under reduced irrigation. However, the decrease was smaller in the bracts than in the leaves, indicating that the bracts experienced less severe photoinhibition compared to the leaves. The greater drought tolerance of bracts could be related to differences in relative water content, instantaneous water-use efficiency, and photorespiration rate. The ratio of photorespiration to net photosynthesis was much higher in the bracts than in leaves. Furthermore, water deficiency (due to the water-saving drip irrigation) had no significant effect on that ratio in the bracts. We hypothesized that photorespiration in the bracts alleviated photoinhibition and maintained photosynthetic activity.


Photosynthetica | 2017

Evolution characteristics related to photosynthesis, growth and yield in some old and new cotton cultivars

Honghai Luo; Hui Zhang; Yu Zhang; W. F. Zhang

Changes in photosynthetic attributes related to genetic improvement of cotton yield were studied in seven Chinese cotton cultivars widely grown in Xinjiang during the past 30 years. Our results showed that a chlorophyll (Chl) content and net photosynthetic rate (PN) of the 1980s cultivar was the highest among all after 60 days from planting (DAP). However, after 75 DAP, the Chl content, PN, and actual photochemical efficiency of PSII of the old cultivars declined gradually, whereas those of the new cultivars remained relatively high. Compared to the old cultivars, leaves of the new cultivars endured a longer period and their senescence was slower, shoot and boll dry mass was higher, but the root to shoot ratio was lower. The lint yield of the 2000s cultivars was 14.7 and 21.4% higher than that of 1990s and 1980s cultivars, respectively. The high yield of the new cultivars was attributed to a greater number of bolls per unit of area with high lint percentage. We suggested that the improved photosynthetic capacity and the increased ability to deliver photosynthates to reproductive sites during the peak boll-setting stage to boll-opening stage were the key physiological basis in the evolution process of cotton cultivars from 1980s to 2000s for the cotton yield improvement within a short growing period.


Photosynthetica | 2017

Photosynthesis and biomass allocation of cotton as affected by deep-layer water and fertilizer application depth

Zongkui Chen; Y. P. Niu; Hui Ma; Abdul Hafeez; Honghai Luo; W. F. Zhang

Available water stored in deep soil layers could increase the photosynthetic capacity of cotton. It was hypothesized that the photosynthesis of cotton would be enhanced by changing the fertilizer application depth under different deep-layer water conditions. We examined two deep-layer water levels, i.e., well-watered (W80) and not watered (W0), combined with surface application (F10) and deep application (F30) of basal fertilizer. Compared to W0, W80 resulted in increased leaf area (LA), photosynthetic pigment contents, maximal PSII efficiency (Fv/Fm), effective quantum yield of PSII (YII) and PSI (YI), electron transport rate of PSII (ETRII) and PSI (ETRI). W80 also increased the aboveground and root dry mass by 39 and 0.6%, respectively, and decreased the root/shoot ratio by 40–73%. Under the W0 condition, higher values of Fv/Fm, YII, YI, ETRII, and ETRI were measured for F10 compared to F30 after 69 d from emergence. Under the W80 condition, cotton plants with F10 showed higher LA, Fv/Fm, YII, YI, ETRII, and ETRI, but there were no significant differences in the photosynthetic pigments compared to F30. Our results suggest that sufficient water in deeper soil layers and the surface application of basal fertilizer could increase photosynthetic activity and efficiency, which promoted aboveground dry mass accumulation and partitioning towards reproductive organs.


Photosynthetica | 2018

Coordinated variation between veins and stomata in cotton and its relationship with water-use efficiency under drought stress

Zhangying Lei; Jimei Han; Xiao-Ping Yi; W. F. Zhang; Yujie Zhang

Drought stress causes changes in vein and stomatal density. The objectives of this study were to determine (1) if the changes in vein and stomatal density are coordinated in cotton (Gossypium hirsutum L.) and (2) how these changes affect water-use efficiency (WUE). The results showed significant positive correlations between vein density and stomatal density when cotton was grown under different degrees of drought stress. WUE was significantly positively correlated with the densities of both veins and stomata. Stomatal pore area and stomatal density on the abaxial leaf side, but not the adaxial side, were significantly correlated with WUE, stomatal conductance, leaf net photosynthetic rate, and transpiration rate. In conclusion, coordinated changes in vein and stomatal density improve the WUE of cotton under drought stress. The abaxial leaf side plays a more important role than the adaxial side in WUE and gas exchange.


Parasites & Vectors | 2015

Rickettsia raoultii in Haemaphysalis erinacei from marbled polecats, China–Kazakhstan border

Li-Ping Guo; Lu-Meng Mu; Jun Xu; Su-Hua Jiang; An-Dong Wang; Chuangfu Chen; Gang Guo; W. F. Zhang; Yuanzhi Wang


Experimental and Therapeutic Medicine | 2016

OMP31 of Brucella melitensis 16M impairs the apoptosis of macrophages triggered by TNF-α

Ke Zhang; Hui Wang; Fei Guo; Li Yuan; W. F. Zhang; Yuanzhi Wang; Chuangfu Chen

Collaboration


Dive into the W. F. Zhang's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ke Zhang

Pingdingshan University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge