W.H. Kuan
Ming Chi University of Technology
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by W.H. Kuan.
Water Research | 2003
Ching Yao Hu; Shang-Lien Lo; W.H. Kuan
Batch experiments with bipolar aluminum electrodes and potentiodynamic polarization tests with monopolar systems were conducted to investigate the effects of the type and concentration of co-existing anions on defluoridation in electrocoagulation (EC) process. The results demonstrate that the type of the dominant anion directs the EC defluoridation reaction. The defluoridation efficiency was almost 100% and most of the fluoride removal reaction occurred on the surface of the anode in the solution without the co-existing anions, due to the electro-condensation effect. In the solutions with co-existing anions, most of the defluoridation took place in bulk solution. The residual fluoride concentration is a function of the total mass of Al(III) liberation from anodes and the types of the functions in the solutions with and without co-existing anions are different. The existence of sulfate ions inhibits the localized corrosion of aluminum electrodes, leading to lower defluoridation efficiency because of lower current efficiency. The presence of chloride or nitrate ions prevented the inhibition of sulfate ions, and the chloride ions were more efficient. Different corrosion types occurred in different anion-containing solutions and the form of corrosion affected the kinetic over-potential. The bypass flow causes the decrease of current efficiency and the proportion of the bypass flow of current increased due to a rise of the kinetic over potential and the conductivity of the solution.
Bioresource Technology | 2008
Yu-Fong Huang; W.H. Kuan; Shang-Lien Lo; Cheng-Fang Lin
This article presents the application of microwave-induced pyrolysis to total recovery of resources and energy from rice straw. The microwave power and particle size of feedstock were both key parameters affecting the performance of microwave-induced pyrolysis. Under 400-500W microwave power, the reduction of fixed carbon in the biomass was significant. From the experimental results of specific surface area, zeta potential, and Cu2+ adsorption, the applications of solid residues in the water and wastewater treatment could be expected. The major compositions in gaseous product were H2, CO2, CO, CH4 of 55, 17, 13, 10vol.%, respectively. The high H2 content might imply that microwave-induced pyrolysis of biomass waste has the potential to produce the H2-rich fuel gas. Alkanes, polars, and low-ringed polycyclic aromatic hydrocarbons were three primary kinds of compounds in the liquid product.
Bioresource Technology | 2010
Yu-Fong Huang; W.H. Kuan; Shang-Lien Lo; Cheng-Fang Lin
This study aimed to research the productivity of H(2)-rich fuel gas from rice straw using the microwave-induced pyrolysis. The formation constituents of gas product and the mechanism of its production were also discussed. The primary components of gas product were H(2), CO(2), CO, and CH(4), with average percentages of 50.67, 22.56, 16.09, and 7.42vol.%, respectively. According to the TA-MS analysis, it was suggested that focused heating by microwaves made the microwave-induced pyrolysis different from the traditional pyrolysis. A chemical equation could be nearly balanced to illustrate the gas composition generated from rice straw. From the viewpoint of energy consumption, close to 60% of the input energy could be derived and utilized as bioenergy.
Bioresource Technology | 2011
Yu-Fong Huang; W.H. Kuan; Pei-Te Chiueh; Shang-Lien Lo
The kinetic parameters such as pre-exponential factor and activation energy of hemicellulose, cellulose, and lignin were well determined by the linear regressions of selected, sufficient thermogravimetric data, and close to literature values. The pyrolysis of biomass can be divided into four stages. There was only drying in the zeroth stage (<150°C). In the first stage (150-250°C), some light hydrocarbons were produced with the early pyrolysis of biomass. The biomass was mainly pyrolyzed in the second stage (250-500°C) with higher reaction rates than those of other stages. The productions of H(2) and CO(2) in the third stage (>500°C) may be able to be the evidence of self-gasification of char existing at higher temperatures.
Environmental Science & Technology | 2010
Li Hsu; Shan-Li Wang; Ya-Ting Lin; Ming-Kuang Wang; Po Neng Chiang; J.C. Liu; W.H. Kuan; Chung Chi Chen; Yu-Min Tzou
Interactions of toxic Cr(VI) with renewable biomaterials are considered an important pathway for Cr(VI) removal in ecosystems. Biomaterials are susceptible to dissolution, and their dissolved derivatives may provide an alternative to surface-involved pathway for scavenging of Cr(VI). In this study, dissolved organic carbon (DOC) derived from Neurospora crassa biomass was investigated. The proportion of Cr(VI) reduction by DOC to that on biomass was determined to evaluate the importance of DOC to Cr(VI) reduction. A rapid increase in DOC concentration from 145.6 to 193.7 mg L(-1) was observed when N. crassa-biomass was immersed in 0.01 M KCl solution at pH of 1-5, and polysaccharides, peptides, and glycoproteins with carboxyl, amide, and -NH functional groups, are the major compositions of DOC. On reaction of 96.2 microM Cr(VI) with N. crassa-biomass or DOC, it was estimated that DOC contributed approximately 53.8-59.5% of the total Cr(VI) reduction on biomass in the dark. Illumination enhanced Cr(VI) reduction via photo-oxidation of biomass/DOC under aeration conditions, which formed superoxide for Cr(VI) reduction. At pH 1, photoinduced Cr(VI) reduction by DOC proceeded more rapidly than reduction on the biomass surface. However, at pH >3, with a decrease in Cr(VI) reduction by DOC, photon-excited biomass may become an important electron source for Cr(VI) photoreduction.
Bioresource Technology | 2012
Ying-Shuian Shen; Shan-Li Wang; Yu-Min Tzou; Ya-Yi Yan; W.H. Kuan
The Cr(VI) removal by coconut coir (CC) and chars obtained at various pyrolysis temperatures were evaluated. Increasing the pyrolysis temperature resulted in an increased surface area of the chars, while the corresponding content of oxygen-containing functional groups of the chars decreased. The Cr(VI) removal by CC and CC-derived chars was primarily attributed to the reduction of Cr(VI) to Cr(III) by the materials and the extent and rate of the Cr(VI) reduction were determined by the oxygen-containing functional groups in the materials. The contribution of pure Cr(VI) adsorption to the overall Cr(VI) removal became relatively significant for the chars obtained at higher temperatures. Accordingly, to develop a cost-effective method for removing Cr(VI) from water, the original CC is more advantageous than the carbonaceous counterparts because no pyrolysis is required for the application and CC has a higher content of functional groups for reducing Cr(VI) to less toxic Cr(III).
Bioresource Technology | 2013
Yu-Fong Huang; W.H. Kuan; Chi-Cheng Chang; Yu-Min Tzou
Corn stover, which is one of the most abundant agricultural residues around the world, could be converted into valuable biofuels and bio based products by means of microwave pyrolysis. After the reaction at the microwave power level of 500W for the processing time of 30min, the reaction performance under N2 atmosphere was generally better than under CO2 atmosphere. This may be due to the better heat absorbability of CO2 molecules to reduce the heat for stover pyrolysis. Most of the metal-oxide catalysts effectively increased the maximum temperature and mass reduction ratio but lowered the calorific values of solid residues. The gas most produced was CO under N2 atmosphere but CO2 under CO2 atmosphere. Catalyst addition lowered the formation of PAHs and thus made liquid products less toxic. More liquid products and less gas products were generated when using the catalysts possibly due to the existence of the Fischer-Tropsch synthesis.
Bioresource Technology | 2011
Yu-Fong Huang; W.H. Kuan; Pei-Te Chiueh; Shang-Lien Lo
The kinetics of biomass pyrolysis was studied via a sequential method including two stages. Stage one is to analyze the kinetics of biomass pyrolysis and starts with the determination of unreacted fraction of sample at the maximum reaction rate, (1-α)(m). Stage two provides a way to simulate the reaction rate profile and to verify the appropriateness of kinetic parameters calculated in the previous stage. Filter paper, xylan, and alkali lignin were used as representatives of cellulose, hemicellulose, and lignin whose pyrolysis was analyzed with the assumption of the orders of reaction being 1, 2, and 3, respectively. For most of the biomass pyrolysis, kinetic parameters were properly determined and reaction rate profiles were adequately simulated by regarding the order of reaction as 1. This new method should be applicable to most of the biomass pyrolysis and similar reactions whose (1-α)(m) is acquirable, representative, and reliable.
Bioresource Technology | 2012
Yu-Fong Huang; Wei-Liang Chen; Pei-Te Chiueh; W.H. Kuan; Shang-Lien Lo
Microwave torrefaction of rice straw and pennisetum was researched in this article. Higher microwave power levels contributed to higher heating rate and reaction temperature, and thus produced the torrefied biomass with higher heating value and lower H/C and O/C ratios. Kinetic parameters were determined with good coefficients of determination, so the microwave torrefaction of biomass might be very close to first-order reaction. Only 150W microwave power levels and 10min processing time were needed to meet about 70% mass yield and 80% energy yield for torrefied biomass. The energy density of torrefied biomass was about 14% higher than that of raw biomass. The byproducts (liquid and gas) possessed about 30% mass and 20% energy of raw biomass, and they can be seen as energy sources for heat or electricity. Microwave torrefaction of biomass could be a competitive technology to employ the least energy and to retain the most bioenergy.
Bioresource Technology | 2013
W.H. Kuan; Yu-Fong Huang; Chi-Cheng Chang; Shang-Lien Lo
The aim of this study was to research the catalytic effects on the microwave pyrolysis of sugarcane bagasse and thus to discuss the reaction performance, product distribution, and kinetic analysis. With the addition of metal-oxides served as catalysts, reaction results such as mass reduction ratio and reaction rate increased, even the maximum temperature decreased. Adding either NiO or CaO slightly increased the production of H2, while adding either CuO or MgO slightly decreased it. The addition of either CaO or MgO enhanced the gaseous production, and either NiO or CuO addition enhanced the liquid production. There could be several secondary reactions such as self-gasification and interactions among the gases originally produced during the pyrolysis stage to alter the composition of gaseous product and the final three-phase product distribution. The catalyst addition slightly increased the activation energy but greatly increased the pre-exponential factor.