Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where W. Haberichter is active.

Publication


Featured researches published by W. Haberichter.


Journal of Instrumentation | 2008

Calibration of a digital hadron calorimeter with muons

B. Bilki; John Butler; Tim Cundiff; Gary Drake; W. Haberichter; Eric Hazen; J. Hoff; Scott Holm; A. Kreps; Ed May; Georgios Mavromanolakis; Edwin Norbeck; David Northacker; Y. Onel; J. Repond; David Underwood; Shouxiang Wu; Lei Xia

The calibration procedure of a finely granulated digital hadron calorimeter with Resistive Plate Chambers as active elements is described. Results obtained with a stack of nine layers exposed to muons from the Fermilab test beam are presented.The calibration procedure of a finely granulated digital hadron calorimeter with Resistive Plate Chambers as the active elements is described. Results obtained with a stack of nine layers exposed to muons from the Fermilab test beam are presented.


Journal of Instrumentation | 2008

The ATLAS High Level Trigger Region of Interest Builder

Robert Blair; J. Dawson; Gary Drake; W. Haberichter; James Schlereth; Jinlong Zhang; M. Abolins; Y. Ermoline; Bernard Pope

This article describes the design, testing and production of the ATLAS Region of Interest Builder (RoIB). This device acts as an interface between the Level 1 trigger and the high level trigger (HLT) farm for the ATLAS LHC detector. It distributes all of the Level 1 data for a subset of events to a small number of (16 or less) individual commodity processors. These processors in turn provide this information to the HLT. This allows the HLT to use the Level 1 information to narrow data requests to areas of the detector where Level 1 has identified interesting objects.


ieee-npss real-time conference | 2007

Performance of the final Event Builder for the ATLAS Experiment

H. P. Beck; M. Abolins; A. Battaglia; R. E. Blair; A. Bogaerts; M. Bosman; M. D. Ciobotaru; R. Cranfield; G. Crone; J. W. Dawson; R. Dobinson; M. Dobson; A. Dos Anjos; G. Drake; Y. Ermoline; R. Ferrari; M. L. Ferrer; D. Francis; S. Gadomski; S. Gameiro; B. Gorini; B. Green; W. Haberichter; C. Haberli; R. Hauser; Christian Hinkelbein; R. E. Hughes-Jones; M. Joos; G. Kieft; S. Klous

Event data from proton-proton collisions at the LHC will be selected by the ATLAS experiment in a three level trigger system, which reduces the initial bunch crossing rate of 40 MHz at its first two trigger levels (LVL1+LVL2) to ~3 kHz. At this rate the Event-Builder collects the data from all read-out system PCs (ROSs) and provides fully assembled events to the the event-filter (EF), which is the third level trigger, to achieve a further rate reduction to ~ 200 Hz for permanent storage. The event-builder is based on a farm of O(100) PCs, interconnected via gigabit Ethernet to O(150) ROSs. These PCs run Linux and multi-threaded software applications implemented in C++. All the ROSs and one third of the event-builder PCs are already installed and commissioned. We report on performance tests on this initial system, which show promising results to reach the final data throughput required for the ATLAS experiment.


Nuclear Instruments & Methods in Physics Research Section A-accelerators Spectrometers Detectors and Associated Equipment | 1989

Construction and performance of a large area liquid scintillator cosmic ray anticoincidence detector

James Napolitano; S. J. Freedman; Gerald T. Garvey; Michael C. Green; K.T. Lesko; James E. Nelson; James N. Worthington; Kenneth P. Coover; J. Dawson; W. Haberichter; E. Petereit

Abstract We describe details of the construction and performance of a large area cylindrical cosmic ray anticoincidence detector suitable for a medium energy neutrino experiment. The device provides 4π coverage with approximately 400 m2 of liquid scintillator. Cosmic ray muons are rejected on-line with an inefficiency of ⋍ 10−4 which is improved to a level of ⋍ 3 × 10−6 or less with the application of off-line cuts. We also discuss the custom electronics used to operate and read out the device. Results from studies of the attenuation of neutral cosmic ray backgrounds by passive shielding are included.


nuclear science symposium and medical imaging conference | 1999

System architecture and hardware design of the CDF XFT online track processor

Sverre Holm; J.R. Dittman; Jim Freeman; R. Klein; Jonathan D. Lewis; T. Shaw; T. R. Wesson; C. Ciobanu; J. Gerstenslager; J. Hoftiezer; R. Hughes; M. Johnson; P. Koehn; C. Neu; Carlos Sanchez; B. Winer; Kenneth A. Bloom; D. Gerdes; J. Dawson; W. Haberichter

A trigger track processor is being designed for CDF Run 2. This processor identifies high momentum (P/sub T/>1.5 GeV/c) charged tracks in the new central outer tracking chamber for the CDF II detector. The design of the track processor, called the eXtremely Fast Tracker (XFT), is highly parallel and handle an input rate of 183 Gbits/sec and output rate of 44 Gbits/sec. The XFT is pipelined and reports the results for a new event every 132 ns. The XFT uses three stages, hit classification, segment finding, and segment linking. The pattern recognition algorithms for the three stages are implemented in Programmable Logic Devices (PLDs) which allow for in-situ modification of the algorithm at any time. The PLDs reside on three different types of modules. Prototypes of each of these modules have been designed and built, and are working. An overview of the hardware design and the system architecture are presented.


ieee nuclear science symposium | 2011

Production and commissioning of a large prototype Digital Hadron Calorimeter for future colliding beam experiments

A. Baumbaugh; B. Bilki; J. M. Butler; T. Cundiff; L. Dal Monte; P. De Lurgio; G. Drake; K. Francis; W. Haberichter; E. Hazen; J. Hoff; Scott Holm; A. Kreps; J. Repond; J. L. Schlereth; J. Smith; D. Trojand; Sau Lan Wu; L. Xia; Q. Zhang

A new detector technology is being developed for future colliding beam experiments that is based on the use of fine-grained calorimetry, to optimize the use of Particle Flow Algorithms (PFAs) in measuring hadronic jets. Instead of traditional tower geometry and energy summation from many sampling layers, the new approach measures energy deposition in 1 cm2 cells on each sampling layer using discriminators. Jets are reconstructed using hit patterns from each layer, combined with information from inner tracking and the electromagnetic calorimeter. We have built a 480,000 channel prototype detector that is based on Resistive Plate Chambers (RPCs) to demonstrate this concept. The development is part of the CALICE Collaboration. The readout system uses a 64-channel custom integrated circuit called DCAL to record hits from each cell and apply a global timestamp. The chips mount directly on sophisticated front-end boards that are not only an integral part of the charge collection of the detector chambers, but also incorporate digital signal transmission, clock and control, and power and ground. The readout of data is serial, multiplexed into high-speed serial streams and sent to a “back-end” VME system for time-sorting and higher-level triggering. The system can be operated with an external trigger or be self-triggered, and can produce trigger signals from the front-end chips. The construction, installation, and commissioning of this prototype system is now complete. We have begun a measurement program using a test beam at Fermilab. An overview of the system is described. Experiences in building this large prototype system are reported. Results from the test beam are presented.


IEEE Transactions on Nuclear Science | 2008

The ATLAS Event Builder

W. Vandelli; M. Abolins; A. Battaglia; H. P. Beck; R. E. Blair; A. Bogaerts; M. Bosman; M. D. Ciobotaru; R. Cranfield; G. Crone; J. W. Dawson; R. Dobinson; M. Dobson; A. Dos Anjos; G. Drake; Y. Ermoline; R. Ferrari; M. L. Ferrer; D. Francis; S. Gadomski; S. Gameiro; B. Gorini; B. Green; W. Haberichter; C. Haberli; R. Hauser; Christian Hinkelbein; R. E. Hughes-Jones; M. Joos; G. Kieft

Event data from proton-proton collisions at the LHC will be selected by the ATLAS experiment in a three-level trigger system, which, at its first two trigger levels (LVL1+LVL2), reduces the initial bunch crossing rate of 40 MHz to ~3 kHz. At this rate, the Event Builder collects the data from the readout system PCs (ROSs) and provides fully assembled events to the Event Filter (EF). The EF is the third trigger level and its aim is to achieve a further rate reduction to ~200 Hz on the permanent storage. The Event Builder is based on a farm of 0(100) PCs, interconnected via a Gigabit Ethernet to 0(150) ROSs. These PCs run Linux and multi-threaded software applications implemented in C++. All the ROSs, and substantial fractions of the Event Builder and Event Filter PCs have been installed and commissioned. We report on performance tests on this initial system, which is capable of going beyond the required data rates and bandwidths for Event Building for the ATLAS experiment.


IEEE Transactions on Nuclear Science | 2008

Performance of the Final Event Builder for the ATLAS Experiment

H. P. Beck; M. Abolins; A. Battaglia; R. E. Blair; A. Bogaerts; M. Bosman; M. D. Ciobotaru; R. Cranfield; G. Crone; J. W. Dawson; R. Dobinson; M. Dobson; A. Dos Anjos; G. Drake; Y. Ermoline; R. Ferrari; M. L. Ferrer; D. Francis; S. Gadomski; S. Gameiro; B. Gorini; B. Green; W. Haberichter; C. Haberli; R. Hauser; Christian Hinkelbein; R. E. Hughes-Jones; M. Joos; G. Kieft; S. Klous

Event data from proton-proton collisions at the LHC will be selected by the ATLAS experiment by a three level trigger system, which reduces the initial bunch crossing rate of 40 MHz at its first two trigger levels (LVL1+LVL2) to ~3 kHz. At this rate the Event-Builder collects the data from all Read-Out system PCs (ROSs) and provides fully assembled events to the the Event-Filter (EF), which is the third level trigger, to achieve a further rate reduction to ~200 Hz for permanent storage. The Event-Builder is based on a farm of 0 (100) PCs, interconnected via Gigabit Ethernet to 0 (150) ROSs. These PCs run Linux and multi-threaded software applications implemented in C++. All the ROSs and one third of the Event-Builder PCs are already installed and commissioned. Performance measurements have been exercised on this initial system, which show promising results that the required final data rates and bandwidth for the ATLAS event builder are in reach.


IEEE Transactions on Nuclear Science | 1985

Soudan 2 Data Acquisition and Trigger Electronics

J. W. Dawson; W. Haberichter; R.J. Laird; Edward May; N. Mondal; J. L. Schlereth; N. Solomey; J. Thron; S. Heppelmann; P. Shield

The 1.1 kton Soudan 2 calorimetric drift-chamber detector is read out by 16K anode wires and 32K cathode strips. Preamps from each wire or strip are bussed together in groups of 8 to reduce the number of ADC channels. The resulting 6144 channels of ionization signal are flash-digitized every 200 ns and stored in RAM. The raw data hit patterns are continually compared with programmable trigger multiplicity and adjacency conditions. The data acquisition process is managed in a system of 24 parallel crates each containing an Intel 80C86 microprocessor, which supervises a pipe-lined data compactor, and allows transfer of the compacted data via CAMAC to the host computer. The 80C86s also manage the local trigger conditions and can perform some parallel processing of the data. Due to the scale of the system and multiplicity of identical channels, semi-custom gate array chips are used for much of the logic, utilizing 2.5 micron CMOS technology.


HIGH ENERGY GAMMA‐RAY ASTRONOMY: Proceedings of the 4th International Meeting on#N#High Energy Gamma‐Ray Astronomy | 2009

A Topological Array Trigger for AGIS, the Advanced Gamma ray Imaging System

F. Krennrich; J. Anderson; J. H. Buckley; K. L. Byrum; J. Dawson; G. Drake; W. Haberichter; A. Imran; H. Krawczynski; A. Kreps; M. Schroedter; A. Smith

Next generation ground based γ‐ray observatories such as AGIS1 and CTA2 are expected to cover a 1 km2 area with 50–100 imaging atmospheric Cherenkov telescopes. The stereoscopic view ol air showers using multiple view points raises the possibility to use a topological array trigger that adds substantial flexibility, new background suppression capabilities and a reduced energy threshold. In this paper we report on the concept and technical implementation of a fast topological trigger system, that makes use of real time image processing of individual camera patterns and their combination in a stereoscopic array analysis. A prototype system is currently under construction and we discuss the design and hardware of this topological array trigger system.

Collaboration


Dive into the W. Haberichter's collaboration.

Top Co-Authors

Avatar

J. W. Dawson

Argonne National Laboratory

View shared research outputs
Top Co-Authors

Avatar

J. Dawson

Argonne National Laboratory

View shared research outputs
Top Co-Authors

Avatar

G. Drake

Argonne National Laboratory

View shared research outputs
Top Co-Authors

Avatar

M. Abolins

Michigan State University

View shared research outputs
Top Co-Authors

Avatar

Y. Ermoline

Michigan State University

View shared research outputs
Top Co-Authors

Avatar

R. E. Blair

Argonne National Laboratory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

G. Crone

University College London

View shared research outputs
Researchain Logo
Decentralizing Knowledge