W. K. Hensinger
University of Sussex
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by W. K. Hensinger.
Nature Physics | 2006
Daniel Lynn Stick; W. K. Hensinger; S. Olmschenk; M. J. Madsen; Keith Schwab; C. Monroe
The electromagnetic manipulation of isolated atoms has led to many advances in physics, from laser cooling1 and Bose–Einstein condensation of cold gases2 to the precise quantum control of individual atomic ions3. Work on miniaturizing electromagnetic traps to the micrometre scale promises even higher levels of control and reliability4. Compared with ‘chip traps’ for confining neutral atoms5,6,7, ion traps with similar dimensions and power dissipation offer much higher confinement forces and allow unparalleled control at the single-atom level. Moreover, ion microtraps are of great interest in the development of miniature mass-spectrometer arrays8, compact atomic clocks9 and, most notably, large-scale quantum information processors10,11. Here we report the operation of a micrometre-scale ion trap, fabricated on a monolithic chip using semiconductor micro-electromechanical systems (MEMS) technology. We confine, laser cool and measure heating of a single 111Cd+ ion in an integrated radiofrequency trap etched from a doped gallium-arsenide heterostructure.
Physical Review Letters | 2006
L. Deslauriers; S. Olmschenk; Daniel Lynn Stick; W. K. Hensinger; Jonathan David Sterk; C. Monroe
We measure and characterize anomalous motional heating of an atomic ion confined in the lowest quantum levels of a novel rf ion trap that features moveable electrodes. The scaling of heating with electrode proximity is measured, and when the electrodes are cooled from 300 to 150 K, the heating rate is suppressed by an order of magnitude. This provides direct evidence that anomalous motional heating of trapped ions stems from microscopic noisy potentials on the electrodes that are thermally driven. These observations are relevant to decoherence in quantum information processing schemes based on trapped ions and perhaps other charge-based quantum systems.
Applied Physics Letters | 2006
W. K. Hensinger; S. Olmschenk; Daniel Lynn Stick; David Hucul; M. Yeo; M. Acton; L. Deslauriers; C. Monroe; James Rabchuk
We demonstrate a two-dimensional 11-zone ion trap array, where individual laser-cooled atomic ions are stored, separated, shuttled, and swapped. The trap geometry consists of two linear rf-ion trap sections that are joined at a 90° angle to form a T-shaped structure. We shuttle a single ion around the corners of the T-junction and swap the positions of two crystallized ions using voltage sequences designed to accommodate the nontrivial electrical potential near the junction. Full two-dimensional control of multiple ions demonstrated in this system may be crucial for the realization of scalable ion trap quantum computation and the implementation of quantum networks.
Applied Physics B | 2004
M. J. Madsen; W. K. Hensinger; Daniel Lynn Stick; James Rabchuk; C. Monroe
We describe a novel high aspect ratio radiofrequency linear ion trap geometry that is amenable to modern microfabrication techniques. The ion trap electrode structure consists of a pair of stacked conducting cantilevers resulting in confining fields that take the form of fringe fields from parallel plate capacitors. The confining potentials are modeled both analytically and numerically. This ion trap geometry may form the basis for large scale quantum computers or parallel quadrupole mass spectrometers.
Science Advances | 2017
Bjorn Lekitsch; S. Weidt; Austin G. Fowler; Klaus Moelmer; Simon J. Devitt; Christof Wunderlich; W. K. Hensinger
Design to build a trapped ion quantum computer with modules connected by ion transport and voltage-driven quantum gate technology. The availability of a universal quantum computer may have a fundamental impact on a vast number of research fields and on society as a whole. An increasingly large scientific and industrial community is working toward the realization of such a device. An arbitrarily large quantum computer may best be constructed using a modular approach. We present a blueprint for a trapped ion–based scalable quantum computer module, making it possible to create a scalable quantum computer architecture based on long-wavelength radiation quantum gates. The modules control all operations as stand-alone units, are constructed using silicon microfabrication techniques, and are within reach of current technology. To perform the required quantum computations, the modules make use of long-wavelength radiation–based quantum gate technology. To scale this microwave quantum computer architecture to a large size, we present a fully scalable design that makes use of ion transport between different modules, thereby allowing arbitrarily many modules to be connected to construct a large-scale device. A high error–threshold surface error correction code can be implemented in the proposed architecture to execute fault-tolerant operations. With appropriate adjustments, the proposed modules are also suitable for alternative trapped ion quantum computer architectures, such as schemes using photonic interconnects.
Contemporary Physics | 2011
Marcus D. Hughes; Bjoern Lekitsch; Jiddu A. Broersma; W. K. Hensinger
Ion traps offer the opportunity to study fundamental quantum systems with a high level of accuracy highly decoupled from the environment. Individual atomic ions can be controlled and manipulated with electric fields, cooled to the ground state of motion with laser cooling and coherently manipulated using optical and microwave radiation. Microfabricated ion traps hold the advantage of allowing for smaller trap dimensions and better scalability towards large ion trap arrays also making them a vital ingredient for next generation quantum technologies. Here we provide an introduction into the principles and operation of microfabricated ion traps. We show an overview of material and electrical considerations which are vital for the design of such trap structures. We provide guidance on how to choose the appropriate fabrication design, consider different methods for the fabrication of microfabricated ion traps and discuss previously realised structures. We also discuss the phenomenon of anomalous heating of ions within ion traps, which becomes an important factor in the miniaturisation of ion traps.
Physical Review A | 2005
W. K. Hensinger; Dian Wahyu Utami; Hsi-Sheng Goan; Keith Schwab; C. Monroe; G. J. Milburn
An enduring challenge for contemporary physics is to experimentally observe and control quantum behavior in macroscopic systems. We show that a single trapped atomic ion could be used to probe the quantum nature of a mesoscopic mechanical oscillator precooled to 4 K, and furthermore, to cool the oscillator with high efficiency to its quantum ground state. The proposed experiment could be performed using currently available technology.
Applied Physics B | 2012
James D. Siverns; L.R. Simkins; S. Weidt; W. K. Hensinger
Ions confined using a Paul trap require a stable, high voltage and low noise radio frequency (RF) potential. We present a guide for the design and construction of a helical coil resonator for a desired frequency that maximises the quality factor for a set of experimental constraints. We provide an in-depth analysis of the system formed from a shielded helical coil and an ion trap by treating the system as a lumped element model. This allows us to predict the resonant frequency and quality factor in terms of the physical parameters of the resonator and the properties of the ion trap. We also compare theoretical predictions with experimental data for different resonators, and predict the voltage applied to the ion trap as a function of the Q factor, input power and the properties of the resonant circuit.
Nature Communications | 2014
Robin C. Sterling; Hwanjit Rattanasonti; S. Weidt; Kim Lake; Prasanna Srinivasan; S. C. Webster; Michael Kraft; W. K. Hensinger
Microfabricated ion traps are a major advancement towards scalable quantum computing with trapped ions. The development of more versatile ion-trap designs, in which tailored arrays of ions are positioned in two dimensions above a microfabricated surface, will lead to applications in fields as varied as quantum simulation, metrology and atom-ion interactions. Current surface ion traps often have low trap depths and high heating rates, because of the size of the voltages that can be applied to them, limiting the fidelity of quantum gates. Here we report on a fabrication process that allows for the application of very high voltages to microfabricated devices in general and use this advance to fabricate a two-dimensional ion-trap lattice on a microchip. Our microfabricated architecture allows for reliable trapping of two-dimensional ion lattices, long ion lifetimes, rudimentary shuttling between lattice sites and the ability to deterministically introduce defects into the ion lattice.Microfabricated ion traps are a major advancement towards scalable quantum computing with trapped ions. The development of more flexible ion trap designs, in which tailored arrays of ions are positioned in two dimensions above a microfabricated surface, would lead to applications in fields as varied as quantum simulation, metrology and atom-ion interactions. Current surface ion traps often have low trap depths and high heating rates, due to the size of the voltages that can be applied to them, limiting the fidelity of quantum gates. In this article we report on a fabrication process that allows for the application of very high voltages to microfabricated devices in general and we apply this advance to fabricate a 2D ion trap lattice on a microchip. Our scalable microfabricated architecture allows for reliable trapping of 2D ion lattices, long ion lifetimes due to the deep trapping potential, rudimentary shuttling between lattice sites and the ability to deterministically introduce defects into the ion lattice.
Physical Review A | 2006
L. Deslauriers; M. Acton; B. B. Blinov; Kathy-Anne Brickman; P. C. Haljan; W. K. Hensinger; David Hucul; S. Katnik; R. N. Kohn Jr.; P. J. Lee; M. J. Madsen; P. Maunz; S. Olmschenk; D. L. Moehring; Daniel Lynn Stick; Jonathan David Sterk; M. Yeo; K. C. Younge; C. Monroe
Atomic cadmium ions are loaded into radiofrequency ion traps by photoionization of atoms in a cadmium vapor with ultrafast laser pulses. The photoionization is driven through an intermediate atomic resonance with a frequency-quadrupled mode-locked Ti:sapphire laser that produces pulses of either 100-fs or 1-ps duration at a central wavelength of 229 nm. The large bandwidth of the pulses photoionizes all velocity classes of the Cd vapor, resulting in a high loading efficiency compared to previous ion trap loading techniques. Measured loading rates are compared with a simple theoretical model, and we conclude that this technique can potentially ionize every atom traversing the laser beam within the trapping volume. This may allow the operation of ion traps with lower levels of background pressures and less trap electrode surface contamination. The technique and laser system reported here should be applicable to loading most laser-cooled ion species.