Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where W.M. Sharp is active.

Publication


Featured researches published by W.M. Sharp.


Physics of Fluids | 1984

Plasma current and conductivity effects on hose instability

Martin Lampe; W.M. Sharp; Richard F. Hubbard; Edward P. Lee; Richard J. Briggs

Hose instability dispersion relations, which include a self‐consistent treatment of the spatial and temporal evolution of plasma conductivity and plasma current, are derived for a relativistic beam propagating in weakly ionized gas. A simplified conductivity model is used which neglects temperature dependence of the electron mobility. In some regimes the results are dramatically different from those found previously for a beam propagating in a fixed conductivity channel. For example, the hose growth rate is found to decrease with increasing current Ib for a beam propagating in initially neutral gas, even though the plasma return current fraction increases rapidly with Ib. As another example, it is found that an externally driven discharge current can completely eliminate hose instability in a fixed conductivity channel, but causes only a weak decrease in growth rate when the plasma conductivity is modeled self‐consistently. OFF


Physics of Plasmas | 2010

Beam dynamics of the Neutralized Drift Compression Experiment-II, a novel pulse-compressing ion accelerator

A. Friedman; J.J. Barnard; R.H. Cohen; D.P. Grote; Steven M. Lund; W.M. Sharp; A. Faltens; E. Henestroza; J.Y. Jung; J.W. Kwan; E.P. Lee; M. Leitner; B.G. Logan; J.-L. Vay; W.L. Waldron; Ronald C. Davidson; M. Dorf; E.P. Gilson; Igor D. Kaganovich

Intense beams of heavy ions are well suited for heating matter to regimes of emerging interest. A new facility, NDCX-II, will enable studies of warm dense matter at ∼1 eV and near-solid density, and of heavy-ion inertial fusion target physics relevant to electric power production. For these applications the beam must deposit its energy rapidly, before the target can expand significantly. To form such pulses, ion beams are temporally compressed in neutralizing plasma; current amplification factors of ∼50–100 are routinely obtained on the Neutralized Drift Compression Experiment (NDCX) at the Lawrence Berkeley National Laboratory. In the NDCX-II physics design, an initial non-neutralized compression renders the pulse short enough that existing high-voltage pulsed power can be employed. This compression is first halted and then reversed by the beam’s longitudinal space-charge field. Downstream induction cells provide acceleration and impose the head-to-tail velocity gradient that leads to the final neutraliz...


Physics of Fluids | 1984

Alfvén ion‐cyclotron instability in tandem‐mirror plasmas. II

Gary R. Smith; W. M. Nevins; W.M. Sharp

The linear theory of Alfven ion‐cyclotron instability is extended by a rigorous treatment of plasma nonuniformity along the equilibrium magnetic field. A standard phase‐integral dispersion relation provides stability boundaries. Two ion distribution functions allow modeling of plasmas formed in various ways, including neutral‐beam injection both perpendicular and oblique to magnetic field lines. Stability results are quantitatively consistent with past and present experiments. The results further indicate that two important features of stable mirror cells in future experiments are large mirror ratios and pitch‐angle distributions that are broad or are peaked far from perpendicular to the magnetic field.


Physics of fluids. B, Plasma physics | 1993

Recirculating induction accelerators as drivers for heavy ion fusion

J.J. Barnard; F. Deadrick; A. Friedman; David P. Grote; L. V. Griffith; H. C. Kirbie; V. K. Neil; M. A. Newton; Arthur C. Paul; W.M. Sharp; H. D. Shay; Roger O. Bangerter; A. Faltens; C. G. Fong; David L. Judd; E.P. Lee; L. Reginato; S.S. Yu; T. F. Godlove

A two‐year study of recirculating induction heavy ion accelerators as low‐cost driver for inertial‐fusion energy applications was recently completed. The projected cost of a 4 MJ accelerator was estimated to be about


Nuclear Instruments & Methods in Physics Research Section A-accelerators Spectrometers Detectors and Associated Equipment | 2001

Ballistic-neutralized chamber transport of intense heavy ion beams☆

D. V. Rose; D.R. Welch; B.V. Oliver; R.E. Clark; W.M. Sharp; A. Friedman

500 M (million) and the efficiency was estimated to be 35%. The principal technology issues include energy recovery of the ramped dipole magnets, which is achieved through use of ringing inductive/capacitive circuits, and high repetition rates of the induction cell pulsers, which is accomplished through arrays of field effect transistor (FET) switches. Principal physics issues identified include minimization of particle loss from interactions with the background gas, and more demanding emittance growth and centroid control requirements associated with the propagation of space‐charge‐dominated beams around bends and over large path lengths. In addition, instabilities such as the longitudinal resistive instability, beam‐breakup instability and betatron‐orbit instability were found to be controllable with careful design.


Fusion Engineering and Design | 1996

Plasma lens focusing and plasma channel transport for heavy ion fusion

A. Tauschwitz; S.S. Yu; S. Eylon; Roger O. Bangerter; W. P. Leemans; C. Peters; J.O. Rasmussen; L. Reginato; J.J. Barnard; W.M. Sharp

Abstract Two-dimensional particle-in-cell simulations of intense heavy ion beams propagating in an inertial confinement fusion (ICF) reactor chamber are presented. The ballistic-neutralized transport scheme studied uses 4 GeV Pb +1 ion beams injected into a low-density, gas-filled reactor chamber and the beam is ballistically focused onto an ICF target before entering the chamber. Charge and current neutralization of the beam is provided by the low-density background gas. The ballistic-neutralized simulations include stripping of the beam ions as the beam traverses the chamber as well as ionization of the background plasma. In addition, a series of simulations are presented that explore the charge and current neutralization of the ion beam in an evacuated chamber. For this vacuum transport mode, neutralizing electrons are only drawn from sources near the chamber entrance.


Nuclear Instruments & Methods in Physics Research Section A-accelerators Spectrometers Detectors and Associated Equipment | 1998

INDUCTION ACCELERATOR ARCHITECTURES FOR HEAVY-ION FUSION

J.J. Barnard; Roger O. Bangerter; A. Faltens; T.J. Fessenden; A. Friedman; E.P. Lee; B.G. Logan; Steven M. Lund; Wayne R. Meier; W.M. Sharp; S.S. Yu

Abstract The capabilities of adiabatic, current-carrying plasma lenses for the final focus problem in heavy-ion-beam-driven inertial confinement fusion are explored and compared with the performance of non-adiabatic plasma lenses, and with that of conventional quadrupole lenses. A final focus system for a fusion reactor is proposed, consisting of a conventional quadrupole lens to prefocus the driver beams to the entrance aperture of the adiabatic lens, the plasma lens itself, and a high current discharge channel inside the chamber to transport the focused beam to the fusion pellet. Two experiments are described that address the issues of adiabatic focusing, and of transport channel generation and stability for ion beam transport. The test of the adiabatic focusing principle shows a 26-fold current density increase of a 1.5 MeV potassium ion beam during operation of the lens. The lens consist of a discharge of length 300 mm, filled with helium gas at a pressure of 1 Torr and is pulsed with a current between 5 and 15 kA. The investigations of discharge channels for ion beam transport show that preionization of the discharge channels with a UV laser can be an efficient way to direct and stabilize the discharge.


international conference on plasma science | 2013

Computational methods in the Warp code framework for kinetic simulations of particle beams and plasmas

A. Friedman; R.H. Cohen; David P. Grote; Steven M. Lund; W.M. Sharp; Jean Luc Vay; I. Haber; R. A. Kishek

Abstract The approach to heavy-ion-driven inertial fusion studied most extensively in the US uses induction modulators and cores to accelerate and confine the beam longitudinally. The intrinsic peak-current capabilities of induction machines, together with their flexible pulse formats, provide a suitable match to the high peak-power requirement of a heavy-ion fusion target. However, as in the RF case, where combinations of linacs, synchrotrons, and storage rings offer a number of choices to be examined in designing an optimal system, the induction approach also allows a number of architectures, from which choices must be made. We review the main classes of architecture for induction drivers that have been studied to date. The main choice of accelerator structure is that between the linac and the recirculator, the latter being composed of several rings. Hybrid designs are also possible. Other design questions include which focusing system (electric quadrupole, magnetic quadrupole, or solenoid) to use, whether or not to merge beams, and what number of beams to use – all of which must be answered as a function of ion energy throughout the machine. Also, the optimal charge state and mass must be chosen. These different architectures and beam parameters lead to different emittances and imply different constraints on the final focus. The advantages and uncertainties of these various architectures will be discussed.


Nuclear Instruments & Methods in Physics Research Section A-accelerators Spectrometers Detectors and Associated Equipment | 1998

Numerical simulation of intense-beam experiments at LLNL and LBNL

Steven M. Lund; J.J. Barnard; George D. Craig; A. Friedman; D.P. Grote; H.S. Hopkins; Thomas C. Sangster; W.M. Sharp; S. Eylon; T.J. Fessenden; E. Henestroza; S.S. Yu; I. Haber

The Warp code (and its framework of associated tools) was initially developed for particle-in-cell simulations of space-charge-dominated ion beams in accelerators, for heavy-ion-driven inertial fusion energy, and related experiments. It has found a broad range of applications, including nonneutral plasmas in traps, stray electron clouds in accelerators, laser-based acceleration, and the focusing of ion beams produced when short-pulse lasers irradiate foil targets. We summarize novel methods used in Warp, including: time-stepping conducive to diagnosis and particle injection; an interactive Python-Fortran-C structure that enables scripted and interactive user steering of runs; a variety of geometries (3-D x, y, z; 2-D r, z; 2-D x, y); electrostatic and electromagnetic field solvers; a cut-cell representation for internal boundaries; the use of warped coordinates for bent beam lines; adaptive mesh refinement, including a capability for time-dependent space-charge-limited flow from curved surfaces; models for accelerator lattice elements (magnetic or electrostatic quadrupole lenses, accelerating gaps, etc.) at user-selectable levels of detail; models for particle interactions with gas and walls; moment/envelope models that support sophisticated particle loading; a drift-Lorentz mover for rapid tracking through regions of strong and weak magnetic field; a Lorentz-boosted frame formulation with a Lorentz-invariant modification of the Boris mover; an electromagnetic solver with tunable dispersion and stride-based digital filtering; and a pseudospectral electromagnetic solver. Warp has proven useful for a wide range of applications, described very briefly herein. It is available as an open-source code under a BSD license. This paper describes material presented during the Prof. Charles K. (Ned) Birdsall Memorial Session of the 2013 IEEE Pulsed Power and Plasma Science Conference. In addition to our overview of the computational methods used in Warp, we summarize a few aspects of Neds contributions to plasma simulation and to the careers of those he mentored.


Laser and Particle Beams | 2003

Integrated experiments for heavy ion fusion

J.J. Barnard; L. Ahle; F.M. Bieniosek; C.M. Celata; Ronald C. Davidson; E. Henestroza; A. Friedman; J.W. Kwan; B.G. Logan; E.P. Lee; Steven M. Lund; Wayne R. Meier; G.-L. Sabbi; P.A. Seidl; W.M. Sharp; D.B. Shuman; W.L. Waldron; Hong Qin; S.S. Yu

We present intense-beam simulations with the WARP code that are being carried out in support of the Heavy-Ion Fusion experimental programs at Lawrence Livermore National Laboratory (LLNL) and Lawrence Berkeley National Laboratory (LBNL). The WARP code is an electrostatic particle-in-cell code with an extensive hierarchy of simulation capabilities. Two experiments are analyzed. First, simulations are presented on an 80 keV, 2 mA K‘ bent transport channel at LLNL that employs an alternating-gradient lattice of magnetic quadrupoles for beam focusing and electric dipoles for beam bending. Issues on dispersion-induced changes in beam quality on the transition from straight- to bent-lattice sections are explored. The second experiment analyzed is a 2 MeV, 800 mA, driver-scale injector and matching section at LBNL that is based on a K‘ source and an alternating-gradient lattice of electrostatic quadrupoles biased to accelerate, focus, and match the beam. Issues on beam quality, space-charge waves, and beam hollowing are explored. Published by Elsevier Science B.V.

Collaboration


Dive into the W.M. Sharp's collaboration.

Top Co-Authors

Avatar

A. Friedman

Lawrence Livermore National Laboratory

View shared research outputs
Top Co-Authors

Avatar

S.S. Yu

Lawrence Livermore National Laboratory

View shared research outputs
Top Co-Authors

Avatar

J.J. Barnard

Lawrence Livermore National Laboratory

View shared research outputs
Top Co-Authors

Avatar

D.P. Grote

Lawrence Livermore National Laboratory

View shared research outputs
Top Co-Authors

Avatar

E. Henestroza

Lawrence Berkeley National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Steven M. Lund

Lawrence Livermore National Laboratory

View shared research outputs
Top Co-Authors

Avatar

W.L. Waldron

Los Alamos National Laboratory

View shared research outputs
Top Co-Authors

Avatar

B.G. Logan

Lawrence Berkeley National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Ronald C. Davidson

Lawrence Berkeley National Laboratory

View shared research outputs
Top Co-Authors

Avatar

P.A. Seidl

Lawrence Berkeley National Laboratory

View shared research outputs
Researchain Logo
Decentralizing Knowledge