W. P. Schweer
Iowa State University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by W. P. Schweer.
Journal of Animal Science | 2016
W. P. Schweer; Sarah Pearce; Eric R. Burrough; Kent J. Schwartz; Kyoung Jin Yoon; J. C. Sparks; Nicholas K. Gabler
The objective of this study was to determine if intestinal function and integrity is altered due to porcine reproductive and respiratory syndrome (PRRS) virus and porcine epidemic diarrhea (PED) virus infection in growing pigs. Forty-two gilts (16.8 ± 0.6 kg BW), naïve for PRRS and PED, were selected and randomly assigned to 1 of 4 treatments: 1) a control (CON; = 6), 2) PRRS virus challenge only (PRRS; = 12), 3) PED virus challenge only (; = 12), or 4) coinfection of PRRS + PED viruses (PRP; = 12). Treatments 2 and 4 were inoculated with a live field strain of PRRS virus on d 0 after inoculation. Treatments 3 and 4 were inoculated with PED virus on 14 d after inoculation (dpi) and all pigs were euthanized 7 d later (21 dpi). Infection with PRRS virus was determined by viremia and seroconversion. Fecal quantitative PCR was used to confirm PED virus infection. Control pigs remained PRRS and PED virus negative throughout the study. Compared with the CON, intestinal morphology was unaffected by PRRS. As expected, PED and PRP treatments resulted in duodenum, jejunum, and ileum villus atrophy compared with the CON treatment ( < 0.01). Ex vivo transepithelial electrical resistance (TER) did not differ between CON and PRRS pigs (P < 0.05) but was reduced by 40% in PED alone ( < 0.01). Interestingly, TER was increased ( < 0.01) in the PRP pigs. Active transport of glucose was increased in PRRS pigs over CON pigs ( < 0.01), whereas PED had pigs increased ( < 0.01) active glutamine transport over the CON pigs. Jejunum GLUT2 mRNA abundance and sucrase, maltase, and Na+/K+ adenosine triphosphatase activities tended to be increased in PRRS pigs compared with CON pigs ( < 0.06). The jejunum AA transporter, SLC6A14, and mucin 2 mRNA abundance tended to be increased in PED-only pigs ( < 0.10). These data suggest that PRRS infection supports a higher affinity for glucose uptake, whereas PED favors glutamine uptake. Interestingly, digestive machinery during PED challenge remained intact. Altogether, PED but not PRRS challenges alter intestinal morphology and integrity in growing pigs.
Journal of Animal Science | 2016
W. P. Schweer; Kent J. Schwartz; Eric R. Burrough; Kyoung Jin Yoon; J. C. Sparks; Nicholas K. Gabler
Abstract Porcine reproductive and respiratory syndrome (PRRS) and porcine epidemic diarrhea (PED) are two diseases costly to the U.S. swine industry. The objective of this study was to determine the impact of PRRS virus and PED virus, alone or in combination, on growth performance, feed efficiency, and digestibility in grower pigs. Forty-two gilts (16 ± 0.98 kg BW) naïve for PRRS and PED were selected and allocated to 1 of 4 treatments. Treatments included 1) a control, 2) PRRS virus infected, 3) PED virus infected, and 4) PRRS+PED coinfection (PRP). Pigs in treatments 2 and 4 were inoculated with a live field strain of PRRS virus via intramuscular and intranasal routes at 0 d after inoculation (dpi). Treatments 3 and 4 were orally inoculated with a cloned PED virus at 15 dpi. Infection with PRRS virus was confirmed by quantitative PCR and seroconversion. Infection with PED virus was confirmed with PCR. Control pigs remained PRRS and PED virus negative throughout the study. All pigs were offered, ad libitum, a standard diet with free access to water. During the test period, PRRS reduced ADG and ADFI by 30 and 26%, respectively (P < 0.05), compared with control pigs, whereas PRP decreased ADG, ADFI, and G:F by 45, 30, and 23%, respectively (P < 0.05). Additional reductions in ADG and G:F were detected in PRP pigs compared with singular PED or PRRS treatments (33 and 16%, respectively). The impact of PED, alone or in combination, on performance (15–21 dpi) reduced ADG (0.66 vs. 0.35 vs. 0.20 kg/d; P < 0.01), ADFI (1.22 vs. 0.88 vs. 0.67 kg/d; P = 0.003), and G:F (0.54 vs. 0.39 vs. 0.31; P = 0.001) compared with control pigs. Compared with control pigs, PRRS infection did not reduce apparent total tract digestibility (ATTD) of nutrients and energy. However, PED infection, alone or in combination, decreased ATTD of DM and energy by 8 and 12%, respectively (P < 0.05). Compared with control pigs, PRP reduced N and OM ATTD by 13 and 3%, respectively (P < 0.05). No significant differences in apparent ileal digestibility (AID) were detected between virus challenges. However, Lys AID tended to be reduced in both PED treatments compared with the control (10 and 12%; P = 0.095). Altogether, PRRS reduced growth but did not alter digestibility. Pigs challenged with PED and, to a greater extent, the coinfection of PED and PRRS viruses had reduced ADG, ADFI, G:F, and ATTD of nutrients and energy.
Translational Animal Science | 2017
W. P. Schweer; Kent J. Schwartz; J. F. Patience; L. Karriker; C. Sparks; M. Weaver; M. Fitzsimmons; T. E. Burkey; N. K. Gabler
Abstract Porcine reproductive and respiratory syndrome (PRRS) virus is a major swine virus that causes reproductive impairment in sows, as well as respiratory disease, reduction in growth rates, and mortalities in all ages of pigs. The objective of this study was to quantify the impact PRRS has on grower-finisher pig feed efficiency and tissue accretion rates. Thirty PRRS naïve, littermate pairs of maternal line Choice Genetics gilts (33.6 ± 0.58 kg BW) were selected and pairs split across 2 barns consisting of 5 pens (n = 6 pigs/pen per barn). Pigs in both barns were fed corn-soybean-DDGS diets ad libitum. All pigs in one barn were inoculated (CHAL) via an i.m. injection of a live PRRS strain isolated from the region (0 d post inoculation, dpi), while pigs in the other barn were given a saline control injection (CONT). Pig performance (ADG, ADFI, G:F) was assessed from 35 kg BW until each group reached market BW (128 kg). Additionally, longitudinal apparent total tract digestibility (ATTD) and body composition was assessed using Dual-energy X-ray absorptiometry (DXA) post inoculation (dpi) to estimate lean, protein, fat and bone accretion rates. Serological data from CHAL pigs showed that PRRS titers peaked 7 dpi and these pigs seroconverted by 35 dpi. According to both genomic and protein PRRS titers, CONT pigs were naïve to CHAL throughout the study. The PRRS infection reduced (P < 0.001) ATTD of dry matter, energy and nitrogen by 3 to 5% at 21 dpi and the reduction in ATTD persisted after 65 dpi. Compared to the CONT, CHAL pigs had decreased ADG (0.89 vs. 0.80 kg/d, P < 0.001), ADFI (2.05 vs. 1.93 kg/d, P < 0.001), and G:F (0.44 vs. 0.41 kg/d, P < 0.001) over the entire test period. The CHAL pigs also had attenuated DXA predicted whole body accretion of lean (547 vs. 633 g/d, P = 0.001), protein (109 vs. 126 g/d, P = 0.001) and fat (169 vs. 205 g/d, P = 0.001) compared to their CONT counterparts from dpi 0 to 80. Based on carcass data at slaughter (and consistent with the DXA data), CHAL pigs had leaner carcasses and reduced yields. These data clearly demonstrate that PRRS infection reduces digestibility, feed efficiency and protein accretion rates in grower-finisher pigs.
Journal of Animal Science | 2018
W. P. Schweer; J. F. Patience; Eric R. Burrough; B. J. Kerr; Nicholas K. Gabler
Abstract Porcine reproductive and respiratory syndrome virus (PRRSV) is a significant disease in the swine industry, and increasing soybean meal (SBM) consumption during this disease challenge may improve performance. Our objectives were to determine the impact of SBM level on apparent total tract (ATTD) and ileal (AID) digestibility during PRRSV infection and to determine ileal basal endogenous losses (BEL) during PRRSV infection. Forty PRRSV negative gilts were fitted with a T-cannula in the distal ileum. Treatments were arranged in a 2 × 2 factorial with high and low SBM (HSBM, 29% vs. LSBM, 10%), with and without PRRSV (n = 6/treatment). The remaining pigs (n = 8/challenge status) were fed a N-free diet. Chromic oxide was used as an indigestible marker. On day post inoculation (dpi) 0, at 47.7 ± 0.57 kg BW, 20 pigs were inoculated with live PRRSV; 20 control pigs were sham inoculated. Infection was confirmed by serum PCR. Feces were collected at dpi 5 to 6 and dpi 16 to 17, and ileal digesta collected at dpi 7 to 8 and dpi 18 to 19. Feed, feces, and digesta were analyzed for DM, N, and GE. Digesta and feed were analyzed for AA. Data were analyzed in a 2 × 2 + 2 factorial design to determine main effects of diet and PRRSV and their interaction. Data from N-free fed pigs were analyzed separately to determine BEL and hindgut disappearance due to PRRSV infection. All control pigs remained PRRSV negative. There were no interactions for AID of AA; however, HSBM reduced DM, GE, Lys, and Met AID and increased Arg and Gly AID during both collection periods (P < 0.05). At dpi 7 to 8 only, PRRSV reduced DM and GE AID (P < 0.05). At 7 to 8 dpi, BEL of Arg, Ala, and Pro were reduced (P < 0.05) due to PRRSV by 64%, 39%, and 94%, respectively. At dpi 18 to 19, BEL of Thr tended (P = 0.06) to be increased in PRRSV-infected pigs; however, no other differences were observed. Pigs fed LSBM had increased Lys, Met, Thr, Trp, and Pro standardized ileal digestibility (SID), primarily at 7 to 8 dpi. At 7 to 8 dpi, PRRSV reduced Arg, Gly, and Pro SID (P < 0.01), and SID Pro continued to be reduced by 17% at dpi 18 to 19. Compared with HSBM pigs, LSBM reduced hindgut disappearance of DM and GE at dpi 5 to 8 and dpi 16 to 19, while N disappearance was reduced at dpi 5 to 8. There were no differences between control and PRRSV N-free fed pigs. Altogether, SBM inclusion impacts SID of AA and hindgut disappearance of nutrients, regardless of PRRSV. In contrast, there is minimal impact of PRRSV on BEL, and therefore, SID of most AA are not different.
Translational Animal Science | 2018
Kristin M Olsen; Nicholas K. Gabler; Chris J Rademacher; Kent J. Schwartz; W. P. Schweer; Gene G. Gourley; J. F. Patience
Abstract The objectives of this experiment were to evaluate the effects of alternatives to antibiotic growth promoters (AGP), two group sizes, and their interaction on nursery pig performance to serve as a model for future AGP alternative studies. A 41-d experiment was conducted in a commercial wean-to-finish barn; 1,300 piglets weaned at 21 d of age (weaned 2 or 4 d prior to experiment; 6.14 ± 0.18 kg BW; PIC 1050 sows and multiple sire lines) were blocked by sire, sex, and weaning date, then assigned to eight treatments: four dietary treatments each evaluated across two group sizes. The four dietary treatments were: negative control (NC), positive control (PC; NC + in-feed antibiotics), zinc oxide plus a dietary acidifier (blend of fumaric, citric, lactic, and phosphoric acid) (ZA; NC + ZnO + acid), and a Bacillus-based direct-fed-microbial (DFM) plus resistant potato starch (RS) (DR; NC + DFM + RS). The two group sizes were 31 or 11 pigs/pen; floor space was modified so area/pig was equal between the group sizes (0.42 m2/pig). There were 7 pens/diet with 11 pigs/pen and 8 pens/diet with 31 pigs/pen. Data were analyzed as a randomized complete block design with pen as the experimental unit. Diagnostic assessment of oral fluids, serum, and tissue samples was used to characterize health status. Pigs experienced natural challenges of acute diarrhea and septicemia in week 1 and porcine reproductive and respiratory syndrome virus (PRRSV) in weeks 4–6. There was a significant interaction between diet and group size for ADG (P = 0.012). PC increased ADG in large and small groups (P < 0.05) and ZA increased ADG only in large groups (P < 0.05). Small groups had improved ADG compared to large groups when fed NC or DR diets (P < 0.05). Similarly, PC increased ADFI (P < 0.05). Compared to NC, ZA improved ADFI in large groups only (P < 0.05; diet × group size: P = 0.015). Pigs fed PC had greater G:F than NC (P < 0.05), and small groups had greater G:F than large groups (P < 0.05). There was no effect of ZA or DR on G:F. Pigs fed PC required fewer individual medical treatments than NC and pigs fed ZA were intermediate (P = 0.024). More pigs were removed from large than small groups (P = 0.049), and there was no effect of diet on removals (P > 0.10). In conclusion, careful study design, protocol implementation, sample collection, and recording of important information allowed us to characterize the health status of this group of pigs and determine treatment effects on growth performance and morbidity.
Translational Animal Science | 2018
W. P. Schweer; Omarh F Mendoza; Caleb M Shull; James Lehman; Aaron M Gaines; Kent J. Schwartz; Nicholas K. Gabler
Abstract Porcine reproductive and respiratory syndrome virus (PRRSV) reduces grower pig performance. The amino acid (AA) requirements and lysine:metabolizable energy ratio (Lys:ME) of health-challenged pigs for optimum performance are poorly understood. Two experiments were conducted to evaluate the effect of increasing standardized ileal digestible (SID) Lys:ME (g SID Lys per Mcal ME) on growth performance during a PRRSV challenge. In Exp. 1, a total of 379 barrows (51.3 ± 0.3 kg body weight [BW]) were allotted to one of six diets (1.87 to 3.41 Lys:ME) for a 35-d growth study. In Exp. 2, a total of 389 barrows (29.2 ± 0.23 kg BW) were allotted to one of six diets (2.39 to 3.91 Lys:ME) for a 49-d growth study. These isocaloric diets represented 80% to 130% of National Research Council (NRC) SID Lys requirement. For each experiment, pigs were randomly allotted across two barns of 24 pens each with seven to nine pigs per pen (four pens per diet per health status). On day 0, one barn was inoculated with live PRRSV, one barn sham inoculated (control), and all pigs were started on experimental diets. Pen growth performance and feed intake were recorded weekly and gain-to-feed ratio (G:F) was calculated. Breakpoint analysis was used to determine the Lys:ME that maximized average daily gain (ADG) and G:F over the 35 or 49-d test periods for Exp. 1 and 2, respectively. In Exp. 1, increasing Lys:ME increased ADG (quadratic P = 0.01) and G:F (linear and quadratic P = 0.04) in control pigs over 35 d. In PRRSV-infected pigs, ADG and G:F increased linearly with increasing Lys:ME (P < 0.01). The Lys:ME for optimum ADG and G:F during PRRSV challenge was 2.83 and 3.17, respectively, compared to 2.24 and 2.83, respectively, in control pigs using a one-slope broken-line model. In Exp. 2, pigs in the control barn became naturally infected after 21 days post inoculation. Before infection, ADG and G:F increased with increasing Lys:ME in control and PRRSV-infected pigs (linear and quadratic P < 0.05), and optimum ADG and G:F were achieved at 3.02 and 2.92 Lys:ME, respectively, in PRRSV-infected pigs compared to 2.82 and 3.22 Lys:ME, respectively, in control pigs. Over the 49-d period, increasing Lys:ME improved ADG (P < 0.01, linear and quadratic) and G:F (linear P < 0.01) in naturally infected pigs. The response was similar in experimental infection for ADG (P < 0.01, linear and quadratic) and G:F (linear P = 0.01). The optimum ratio for ADG (2.86 vs. 3.12 Lys:ME) and G:F (3.18 vs. 3.08 Lys:ME) were similar between natural and experimental infection. In summary, increasing Lys:ME by 10% to 20% above NRC requirements improved performance and feed efficiency during an experimental and natural PRRSV challenge.
Journal of Animal Science | 2018
W. P. Schweer; Eric R. Burrough; J. F. Patience; B. J. Kerr; Nicholas K. Gabler
Brachyspira hyodysenteriae (Bhyo) induces mucohemorrhagic diarrhea in pigs and is an economically significant disease worldwide. Our objectives were to determine the impact of Bhyo on apparent total tract digestibility (ATTD), ileal digestibility (AID), and ileal basal endogenous losses (BEL) in grower pigs. In addition, we assessed the effect of Bhyo on hindgut disappearance of DM, N, and GE. Thirty-two Bhyo negative gilts (38.6 ± 0.70 kg BW) were fitted with a T-cannula in the distal ileum and individually penned. In replicates 1 and 2, pigs were fed a complete diet (7 Bhyo-, 10 Bhyo+ pigs) or nitrogen-free diet (NFD; 4 Bhyo-, 11 Bhyo+ pigs), respectively. Across multiple rooms, the 21 Bhyo+ pigs (62.6 ± 1.39 kg BW) were inoculated with Bhyo on day post inoculation (dpi) 0, and the 11 Bhyo- pigs were sham inoculated. Feces were collected from 9 to 11 dpi and ileal digesta collected from 12 to 13 dpi. All pigs were euthanized at 14 to 15 dpi and intestinal tract pathology assessed. Within the complete diet and NFD treatments, data were analyzed to determine pathogen effects. All Bhyo- pigs remained Bhyo negative, and 5 Bhyo+ pigs in each replicate were confirmed Bhyo positive within 9 dpi. Infection with Bhyo reduced ATTD of DM, N, and GE and increased AID of Gly (P < 0.05). No other AA AID differences were observed. Only BEL of Pro was reduced (P < 0.05) while Arg, Trp, and Gly tended (P < 0.10) to be reduced in Bhyo+ pigs. When calculated from AID and BEL, Bhyo infection reduced standardized ileal digestibility (SID) of N, Arg, Lys, Ala, Gly, Pro, and Ser (P < 0.05) and tended to reduce Thr SID (P = 0.09). In the hindgut of Bhyo+ pigs, there was generally an appearance of nutrients rather than disappearance. In Bhyo+ pigs fed a complete diet, hindgut appearance of N and GE were increased (P < 0.05) by 58 and nine-fold, respectively, and DM tended to be increased two-fold (P = 0.06). Similarly, in NFD fed pigs, hindgut appearance of N and GE was increased by 172% and 162%, respectively, although high variability led to no significance. Altogether, Bhyo infection decreases ATTD but has minimal impact on AID of AA, when corrected for BEL, SID of N, Arg, Lys and some nonessential AA are specifically reduced. Unexpectedly, BEL of several AA involved in mucin production were unaffected by Bhyo infection. This may suggest an increased need for specific AA and energy during a Bhyo challenge.
Journal of Animal Science | 2017
W. P. Schweer; J. F. Patience; Kent J. Schwartz; D. Linhares; C. Rademacher; H. K. Allen; Crystal L. Loving; Alejandro Ramirez; Nicholas K. Gabler
Journal of Animal Science | 2018
W. P. Schweer; O F Mendoza; C M Shull; J Lehman; A M Gaines; Kent J. Schwartz; N. K. Gabler
Archive | 2015
W. P. Schweer