Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where W.P. Weiss is active.

Publication


Featured researches published by W.P. Weiss.


Journal of Dairy Science | 2014

Invited review: Enteric methane in dairy cattle production: Quantifying the opportunities and impact of reducing emissions

J.R. Knapp; G.L. Laur; P.A. Vadas; W.P. Weiss; J.M. Tricarico

Many opportunities exist to reduce enteric methane (CH4) and other greenhouse gas (GHG) emissions per unit of product from ruminant livestock. Research over the past century in genetics, animal health, microbiology, nutrition, and physiology has led to improvements in dairy production where intensively managed farms have GHG emissions as low as 1 kg of CO2 equivalents (CO2e)/kg of energy-corrected milk (ECM), compared with >7 kg of CO2 e/kg of ECM in extensive systems. The objectives of this review are to evaluate options that have been demonstrated to mitigate enteric CH4 emissions per unit of ECM (CH4/ECM) from dairy cattle on a quantitative basis and in a sustained manner and to integrate approaches in genetics, feeding and nutrition, physiology, and health to emphasize why herd productivity, not individual animal productivity, is important to environmental sustainability. A nutrition model based on carbohydrate digestion was used to evaluate the effect of feeding and nutrition strategies on CH4/ECM, and a meta-analysis was conducted to quantify the effects of lipid supplementation on CH4/ECM. A second model combining herd structure dynamics and production level was used to estimate the effect of genetic and management strategies that increase milk yield and reduce culling on CH4/ECM. Some of these approaches discussed require further research, but many could be implemented now. Past efforts in CH4 mitigation have largely focused on identifying and evaluating CH4 mitigation approaches based on nutrition, feeding, and modifications of rumen function. Nutrition and feeding approaches may be able to reduce CH4/ECM by 2.5 to 15%, whereas rumen modifiers have had very little success in terms of sustained CH4 reductions without compromising milk production. More significant reductions of 15 to 30% CH4/ECM can be achieved by combinations of genetic and management approaches, including improvements in heat abatement, disease and fertility management, performance-enhancing technologies, and facility design to increase feed efficiency and life-time productivity of individual animals and herds. Many of the approaches discussed are only partially additive, and all approaches to reducing enteric CH4 emissions should consider the economic impacts on farm profitability and the relationships between enteric CH4 and other GHG.


Journal of Dairy Science | 2009

Varying forage type, metabolizable protein concentration, and carbohydrate source affects manure excretion, manure ammonia, and nitrogen metabolism of dairy cows.

W.P. Weiss; L.B. Willett; N.R. St-Pierre; D.C. Borger; T.R. McKelvey; D.J. Wyatt

Effects of forage source, concentration of metabolizable protein (MP), and type of carbohydrate on manure excretion by dairy cows and production of ammonia from that manure were evaluated using a central composite experimental design. All diets (dry basis) contained 50% forage that ranged from 25:75 to 75:25 alfalfa silage:corn silage. Diets contained 10.7% rumen-degradable protein with variable concentrations of undegradable protein so that dietary MP ranged from 8.8 to 12%. Starch concentration ranged from 22 to 30% with a concomitant decrease in neutral detergent fiber. A total of 15 diets were fed to 36 Holstein cows grouped in 6 blocks. Each block was a replicated 3 x 3 Latin square resulting in 108 observations. Manure output (urine and feces) was measured using total collection, and fresh feces and urine were combined into slurries and incubated for 48 h to measure NH3-N production. Feces, urine, and manure output averaged 50.5, 29.5, and 80.1 kg/d, respectively. Manure output increased with increasing dry matter intake (approximately 3.5 kg of manure/kg of dry matter intake), increased concentrations of alfalfa (mostly via changes in urine output), and decreased concentrations of starch (mostly via changes in fecal output). The amount of NH3-N produced per gram of manure decreased with increasing alfalfa because excreted N shifted from urine to feces. Increasing MP increased NH3-N produced per gram of manure mainly because of increased urinary N, but increased fecal N also contributed to the manure NH3. Manure NH3-N production per cow (accounts for effects on manure production and NH3-N produced per unit of manure) was least and milk protein yields were maximal for diets with high alfalfa (75% of the forage), moderate MP (11% of diet dry matter), and high starch (30% of diet dry matter).


Journal of Dairy Science | 2009

Relative bioavailability of all-rac and RRR vitamin E based on neutrophil function and total α-tocopherol and isomer concentrations in periparturient dairy cows and their calves

W.P. Weiss; J.S. Hogan; D.J. Wyatt

The objective of this experiment was to determine whether source of supplemental alpha-tocopherol fed to periparturient dairy cows affects neutrophil function and vitamin E status of the cow and the neonatal calf. Starting 14 d before anticipated calving and continuing until 14 d post-parturition, cows were fed diets with no supplemental vitamin E or with 2,500 IU/d of vitamin E from all-rac alpha-tocopheryl acetate or RRR alpha-tocopheryl acetate. All-rac alpha-tocopherol contains equimolar amounts of all 8 stereoisomers, whereas the RRR contains only the RRR isomer. Concentrations of alpha-tocopherol in cow plasma, colostrum, milk, and blood neutrophils were greatest for the RRR treatment, intermediate for all-rac, and lowest for cows fed no supplemental vitamin E. The concentration of alpha-tocopherol in plasma of newborn calves was very low and not affected by treatment but after 6 feedings of their dams colostrum or milk, concentrations in calf plasma followed the same treatment pattern as cow plasma. The number of bacteria phagocytized was greater by neutrophils from cows fed all-rac vitamin E than for the other 2 treatments, which resulted in a greater number of bacteria being killed. For cows fed all-rac vitamin E, the RRR isomer comprised about 20% of the alpha-tocopherol consumed but approximately 60% of the alpha-tocopherol in plasma and milk. This enrichment was caused mostly by an almost complete discrimination against the 2S isomers. Because all-rac alpha-tocopherol is 50% 2S isomers, these data suggest that 1 g of all-rac tocopheryl acetate is equivalent to 0.5 g of RRR tocopheryl acetate.


Journal of Dairy Science | 2009

Varying type of forage, concentration of metabolizable protein, and source of carbohydrate affects nutrient digestibility and production by dairy cows.

W.P. Weiss; N.R. St-Pierre; L.B. Willett

The effects of forage source, concentration of metabolizable protein (MP), type of carbohydrate, and their interactions on nutrient digestibility and production were evaluated using a central composite treatment design. All diets (dry basis) contained 50% forage that ranged from 25:75 to 75:25 alfalfa silage:corn silage. Rumen-degradable protein comprised 10.7% of the dry matter (DM) in all diets, but undegradable protein ranged from 4.1 to 7.1%, resulting in dietary MP concentrations of 8.8 to 12.0% of the DM. Dietary starch ranged from 22 to 30% of the DM with a concomitant decrease in neutral detergent fiber concentrations. A total of 15 diets were fed to 36 Holstein cows grouped in 6 blocks. Each block consisted of three 21-d periods, and each cow was assigned a unique sequence of 3 diets, resulting in 108 observations. Milk production and composition, feed intake, and digestibility of major nutrients (via total collection of feces and urine) were measured. Few significant interactions between main effects were observed. Starch concentration had only minor effects on digestibility and production. Replacing corn silage with alfalfa decreased digestibility of N but increased digestibility of neutral detergent fiber. Increasing the concentration of MP increased N digestibility. The concentration (Mcal/kg) of dietary digestible energy (DE) increased linearly as starch concentration increased (very small effect) and was affected by a forage by MP interaction. At low MP, high alfalfa reduced DE concentration, but at high MP, increasing alfalfa increased DE concentration. Increasing alfalfa increased DM and DE intakes, which increased yields of energy-corrected milk, protein, and fat. Increasing MP increased yields of energy-corrected milk and protein. The response in milk protein to changes in MP was much less than predicted using the National Research Council (2001) model.


Journal of Dairy Science | 2009

Production responses of dairy cows when fed supplemental fat in low- and high-forage diets.

W.P. Weiss; J.M. Pinos-Rodríguez

Intake of net energy for lactation (NE(L)) is often the limiting factor for milk production and is affected by stage of lactation and dietary concentrations of forage and fat. Because of the mechanisms involved, interactions are likely between those 2 diet components and stage of lactation. We conducted an experiment with 72 Holstein cows starting at 21 and ending at 126 d in milk (DIM). Cows were fed diets (dry matter basis) with 40 or 60% forage (67% corn silage, 33% alfalfa silage) each with 0 or 2.25% added saturated free fatty acids. The high- and low-forage diets contained 25 and 17% forage neutral detergent fiber and 30 and 33% total neutral detergent fiber, respectively; the low-forage diets contained several byproducts. Diets with and without fat contained approximately 5.2 and 3.2% long-chain fatty acids, respectively. Feeding fat or low-forage diets increased NE(L) intake, but no interaction was observed. The increase in NE(L) intake by cows fed low-forage diets was caused by increased dry matter intake, and the increase in NE(L) intake by cows fed fat was caused by increased energy density of the diet. Interactions between fat and forage were observed for energy utilization. When high-forage diets were supplemented with fat, the increased NE(L) intake went toward body energy reserves as measured by higher body condition scores with no change in milk yield. However, when low-forage diets were supplemented with fat, milk yield increased (2.6 kg/d) with no change in body condition. The differential partitioning of NE(L) may have been caused by nutrients other than NE(L) limiting milk production in cows fed the high-forage diets. With low-forage diets, intake of other nutrients was greater (i.e., greater dry matter intake). At 35 DIM, dietary treatments had little effect on milk fatty acids composition but in later lactation (125 DIM), feeding supplemental fatty acids or feeding low-forage diets increased long-chain fatty acids and decreased short-chain fatty acids. However, treatment did not have marked effects on concentrations of total fat or protein in milk. The amount of forage in a diet influences cow responses to supplemental fat and should be considered when diets are formulated.


Journal of Dairy Science | 2008

Effect of Feeding Propionibacteria on Milk Production by Early Lactation Dairy Cows

W.P. Weiss; D.J. Wyatt; T.R. McKelvey

This experiment was conducted to determine the effect of a direct-fed microbial agent, Propionibacterium strain P169 (P169), on rumen fermentation, milk production, and health of periparturient and early-lactation dairy cows. Starting 2 wk before anticipated calving, cows were divided into 2 groups and fed a control diet or the control diet plus 6 x 10(11) cfu/d of P169. Cows were changed to a lactation diet at calving, and treatments continued until 119 d in milk. Rumen fluid samples were taken about 1 wk before calving, and at 1 and 14 wk after calving. Cows fed P169 had lower concentrations of acetate (mol/100 mol of total volatile fatty acids) at all time points, greater concentrations of propionate on the first and last sampling points, and greater concentrations of butyrate on the first 2 time points. Concentrations of glucose in plasma and milk and plasma concentrations of beta-hydroxybutyrate were not affected by treatment. Cows fed P169 had greater concentrations of plasma nonesterified fatty acids on d 7 of lactation. The high nonesterified fatty acids at that time point was probably related to the high production of milk during that period by cows fed the additive. Cows fed P169 during the first 17 wk of lactation produced similar amounts of milk (44.9 vs. 45.3 kg/d, treatment vs. control) with similar composition as cows fed the control diet. Calculated net energy use for milk production, maintenance, and body weight change was similar between treatments, but cows fed the P169 consumed less dry matter (22.5 vs. 23.5 kg/d), which resulted in a 4.4% increase in energetic efficiency.


Journal of Dairy Science | 2011

Milk production and nutrient digestibility by dairy cows when fed exogenous amylase with coarsely ground dry corn.

W.P. Weiss; W. Steinberg; M.A. Engstrom

The digestibility of starch provided by coarsely ground corn is often low, which reduces the digestible energy (DE) concentration of the diet. We hypothesized that adding exogenous amylase to diets based on coarsely ground dent corn would increase dietary DE resulting in greater milk production. Total-tract nutrient digestibility was measured in a partially replicated Latin square experiment (6 cows and 4 periods) with a 2 × 2 factorial arrangement of treatments. Diets had 26 or 31% starch with or without exogenous amylase (amylase was added to the concentrate mixes at the feed mill). In the low and high starch diets, coarsely ground dry corn (mean particle size=1.42 mm) provided 43 and 62% of total dietary starch (corn silage provided most of the remaining starch). No treatment interactions were observed. High starch diets had greater dry matter (DM), organic matter, and energy digestibility than low starch diets, and diets with amylase had greater neutral detergent fiber digestibility than diets without amylase. Digestibility of starch averaged 88% and was not affected by treatment. A long-term (98-d) lactation study with 48 Holstein cows (74 d in milk) was conducted using 3 of the diets (low starch diets with and without amylase and the high starch diet without amylase). Addition of amylase to a diet with 26% starch did not affect intake, milk yield, milk composition, body weight, or body condition. Cows fed the diet with 31% starch had greater DM and DE intakes; yields of milk, fat, and protein; and feed efficiency than those fed diets with 26% starch. Milk composition was not affected by starch concentration. Adding exogenous amylase to a lower starch diet did not make the diet nutritionally equivalent to a higher starch diet.


Journal of Dairy Science | 2010

Technical note: A noninvasive urine collection device for female cattle: Modification of the urine cup collection method

G.J. Lascano; G.I. Zanton; A.J. Heinrichs; W.P. Weiss

Total urine collection from female cattle requires the use of indwelling urinary catheters or an external device requiring secure attachment with adhesive to the animal; neither method is ideal for the welfare of the cattle. A urine collection device was developed to enable total urine collection in female dairy cattle without the use of adhesive to attach the device to the vulva of the animal; the device was a modification of one described previously for female cattle. The urine collection device was made from polypropylene with maximum dimensions (height x width x depth) of 17.5 x 11.0 x 6.0 cm and an opening of approximately 42 cm(2) to cover the vulva. The device was secured using a commercially available udder support harness that provided snap-fasteners and support for the device to be positioned at the level of the vulva. At the point of attachment, a metal brace surrounded the device and was connected to the udder support by metal rings, which kept the urine cup in proper position as the animal arched to urinate. A metal O-clamp and pieces of rubber, serving as leak-proof washers, connected the bottom of the device to Gooch tubing. Another metal clamp was attached to a polyvinyl chloride adapter that was connected to a rubber hose, and urine was collected into carboys located on the floor approximately 1.5 m behind the animals. This modification of a urine cup allows several noninvasive total feces and urine collection studies of unrestricted length to be undertaken without the use of adhesive to attach the device. The floor-level collection system is a practical, portable, and handy system that will permit researchers to perform nutrient balance and metabolic studies on female cattle.


Journal of Dairy Science | 2015

Effect of feeding 25-hydroxyvitamin D3 with a negative cation-anion difference diet on calcium and vitamin D status of periparturient cows and their calves

W.P. Weiss; E. Azem; W. Steinberg; Timothy A. Reinhardt

Holstein cows (>1 gestation) were fed 1 of 3 diets during the last 13 d of gestation (ranged from 22 to 7 d). The control diet (16 cows) was formulated to provide 18,000 IU/d of vitamin D3 and had a dietary cation-anion difference (DCAD) of 165mEq/kg (DCAD=Na + K - Cl - S). The second diet (DCAD + D) provided the same amount of vitamin D3 but had a DCAD of -139mEq/kg (17 cows). The third diet (DCAD + 25D) had no supplemental vitamin D3 but provided 6mg/d of 25-(OH) vitamin D3 [25-(OH)D3] with a DCAD of -138mEq/kg (20 cows). Diets were fed until parturition and then all cows were fed a common lactation diet that contained vitamin D3. Negative DCAD diets reduced urine pH, with the greatest decrease occurring with the DCAD + D treatment. Urinary Ca excretion was greatest for cows fed DCAD + 25D followed by cows fed DCAD + D. Urinary pH was negatively correlated with urinary excretion of Ca for cows fed DCAD + D. No such correlation was observed with the DCAD + 25D treatment because substantial excretion of urinary Ca occurred at moderate urinary pH values for that treatment. Cows fed DCAD + 25D had greater serum concentrations of 25-(OH)D3 than other treatments from 5 d after supplementation started through 7 d in milk. Concentrations of 1,25-(OH)2D3 in serum were greatest in DCAD + 25D cows starting at 2 d before calving and continued through 7 d in milk. Serum Ca concentrations 5 d before calving were greatest for cows fed DCAD + 25D, but at other time points before and after parturition treatment did not affect serum Ca. Incidence of clinical hypocalcemia was not statistically different between treatments, but cows fed DCAD + 25 had the highest incidence rate (12.5, 0, and 20% for control, DCAD + D, and DCAD + 25D). Calves born from cows fed DCAD + 25D had greater concentrations of 25-(OH)D3 in serum at birth than calves from other treatments (before colostrum consumption), but concentrations were similar by 3 d of age. Concentrations of 25-(OH)D3 in colostrum and transition milk were increased by feeding DCAD + 25D, but by 28 d in milk treatment effects no longer existed. Overall, feeding 25-OH vitamin D with a negative DCAD diet increased vitamin D status of the cow and her newborn calf but had minimal effects on calcium status and did not have positive effects on the incidence of hypocalcemia.


Journal of Dairy Science | 2011

The value of different fat supplements as sources of digestible energy for lactating dairy cows1

W.P. Weiss; J.M. Pinos-Rodríguez; D.J. Wyatt

The effects of fat supplements that differed in fatty acid composition (chain length and degree of saturation) and chemical form (free fatty acids, Ca salts of fatty acids, and triacylglyceride) on digestible energy (DE) concentration of the diet and DE intake by lactating cows were measured. Holstein cows were fed a control diet [2.9% of dry matter (DM) as long-chain fatty acids] or 1 of 3 diets with 3% added fatty acids (that mainly replaced starch). The 3 fat supplements were (1) mostly saturated (C18:0) free fatty acids (SFA), (2) Ca-salts of fatty acids (CaFA), and (3) triacylglyceride high in C16:0 fatty acids (TAG). Cows fed CaFA (22.8 kg/d) consumed less DM than cows fed the control (23.6 kg/d) and TAG (23.8 kg/d) diets but similar to cows fed SFA (23.2 kg/d). Cows fed fat produced more fat-corrected milk than cows fed the control diet (38.2 vs. 41.1 kg/d), mostly because of increased milk fat percentage. No differences in yields of milk or milk components were observed among the fat-supplemented diets. Digestibility of DM, energy, carbohydrate fractions, and protein did not differ between diets. Digestibility of long-chain fatty acids was greatest for the CaFA diet (76.3%), intermediate for the control and SFA diets (70.3%), and least for the TAG diet (63.3%). Fat-supplemented diets had more DE (2.93 Mcal/kg) than the control diet (2.83 Mcal/kg), and DE intake by cows fed supplemented diets was 1.6 Mcal/d greater than by cows fed the control, but no differences were observed among the supplements. Because the inclusion rate of supplemental fats is typically low, large differences in fatty acid digestibility may not translate into altered DE intake because of small differences in DM intake or digestibility of other nutrients.

Collaboration


Dive into the W.P. Weiss's collaboration.

Top Co-Authors

Avatar

J.S. Hogan

Ohio Agricultural Research and Development Center

View shared research outputs
Top Co-Authors

Avatar

K.L. Smith

Ohio Agricultural Research and Development Center

View shared research outputs
Top Co-Authors

Avatar

D.J. Wyatt

Ohio Agricultural Research and Development Center

View shared research outputs
Top Co-Authors

Avatar

N.R. St-Pierre

Ohio Agricultural Research and Development Center

View shared research outputs
Top Co-Authors

Avatar

D.A. Todhunter

Ohio Agricultural Research and Development Center

View shared research outputs
Top Co-Authors

Avatar

M.J. Faulkner

Ohio Agricultural Research and Development Center

View shared research outputs
Top Co-Authors

Avatar

W.L. Shockey

Ohio Agricultural Research and Development Center

View shared research outputs
Top Co-Authors

Avatar

D.L. Palmquist

Ohio Agricultural Research and Development Center

View shared research outputs
Top Co-Authors

Avatar

P.S. Schoenberger

Ohio Agricultural Research and Development Center

View shared research outputs
Top Co-Authors

Avatar

A.W. Tebbe

Ohio Agricultural Research and Development Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge