Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where W. Skulski is active.

Publication


Featured researches published by W. Skulski.


Physical Review Letters | 2014

First results from the LUX dark matter experiment at the Sanford Underground Research Facility

X. Bai; J. Balajthy; S. Bedikian; E. Bernard; A. Bernstein; A. Bolozdynya; A. Bradley; D. Byram; C. Chan; C. Chiller; K. Clark; T. Coey; A. Currie; A. Curioni; S. Dazeley; L. de Viveiros; A. Dobi; J. Dobson; E. Druszkiewicz; S. Fiorucci; C. Flores; C. Ghag; M. Hanhardt; M. Horn; M. Ihm; L. Kastens; K. Kazkaz; R. Knoche; S. Kyre; R. Lander

The Large Underground Xenon (LUX) experiment is a dual-phase xenon time-projection chamber operating at the Sanford Underground Research Facility (Lead, South Dakota). The LUX cryostat was filled for the first time in the underground laboratory in February 2013. We report results of the first WIMP search data set, taken during the period from April to August 2013, presenting the analysis of 85.3 live days of data with a fiducial volume of 118 kg. A profile-likelihood analysis technique shows our data to be consistent with the background-only hypothesis, allowing 90% confidence limits to be set on spin-independent WIMP-nucleon elastic scattering with a minimum upper limit on the cross section of 7.6 × 10(-46) cm(2) at a WIMP mass of 33 GeV/c(2). We find that the LUX data are in disagreement with low-mass WIMP signal interpretations of the results from several recent direct detection experiments.


Nuclear Physics | 2005

The PHOBOS Perspective on Discoveries at RHIC

B. B. Back; M. D. Baker; M. Ballintijn; D.S. Barton; Bruce Becker; Russell Richard Betts; A. A. Bickley; R. Bindel; A. Budzanowski; Wit Busza; A. Carroll; Z. Chai; M.P. Decowski; E. García; T. Gburek; N. George; K. Gulbrandsen; S. Gushue; C. Halliwell; J. Hamblen; A.S. Harrington; M. Hauer; G.A. Heintzelman; C. Henderson; David Jonathan Hofman; R. S. Hollis; R. Holynski; Burt Holzman; A. Iordanova; E. Johnson

This paper describes the conclusions that can be drawn from the data taken thus far with the PHOBOS detector at RHIC. In the most central Au+Au collisions at the highest beam energy, evidence is found for the formation of a very high energy density system whose description in terms of simple hadronic degrees of freedom is inappropriate. Furthermore, the constituents of this novel system are found to undergo a significant level of interaction. The properties of particle production at RHIC energies are shown to follow a number of simple scaling behaviors, some of which continue trends found at lower energies or in simpler systems. As a function of centrality, the total number of charged particles scales with the number of participating nucleons. When comparing Au+Au at different centralities, the dependence of the yield on the number of participants at higher p T (∼4 GeV/c) is very similar to that at low transverse momentum. The measured values of charged particle pseudorapidity density and elliptic flow were found to be independent of energy over a broad range of pseudorapidities when effectively viewed in the rest frame of one of the colliding nuclei, a property we describe as “extended longitudinal scaling”. Finally, the centrality and energy dependences of several observables were found to factorize to a surprising degree.


Nuclear Instruments & Methods in Physics Research Section A-accelerators Spectrometers Detectors and Associated Equipment | 2013

The Large Underground Xenon (LUX) Experiment

D. S. Akerib; X. Bai; S. Bedikian; E. Bernard; A. Bernstein; A. Bolozdynya; A. Bradley; D. Byram; S. B. Cahn; C. Camp; M.C. Carmona-Benitez; D. Carr; J.J. Chapman; A.A. Chiller; C. Chiller; K. Clark; T. Classen; T. Coffey; A. Curioni; E. Dahl; S. Dazeley; L. de Viveiros; A. Dobi; E. Dragowsky; E. Druszkiewicz; B. Edwards; C.H. Faham; S. Fiorucci; R.J. Gaitskell; K.R. Gibson

The Large Underground Xenon (LUX) collaboration has designed and constructed a dual-phase xenon detector, in order to conduct a search for Weakly Interacting Massive Particles (WIMPs), a leading dark matter candidate. The goal of the LUX detector is to clearly detect (or exclude) WIMPS with a spin independent cross-section per nucleon of 2×10-46cm2, equivalent to ∼1event/100kg/month in the inner 100-kg fiducial volume (FV) of the 370-kg detector. The overall background goals are set to have <1 background events characterized as possible WIMPs in the FV in 300 days of running. This paper describes the design and construction of the LUX detector.


Physical Review C | 2011

Phobos results on charged particle multiplicity and pseudorapidity distributions in Au+Au, Cu+Cu, d+Au, and p+p collisions at ultra-relativistic energies

B. Alver; B. B. Back; M. D. Baker; M. Ballintijn; D.S. Barton; R. R. Betts; A. A. Bickley; R. Bindel; A. Budzanowski; W. Busza; A. Carroll; Z. Chai; V. Chetluru; M.P. Decowski; E. García; T. Gburek; N. George; K. Gulbrandsen; S. Gushue; C. Halliwell; J. Hamblen; G.A. Heintzelman; C. Henderson; D. J. Hofman; R. S. Hollis; R. Holynski; B. Holzman; A. Iordanova; E. Johnson; J.L. Kane

Pseudorapidity distributions of charged particles emitted in Au+Au, Cu+Cu, d+Au, and p+p collisions over a wide energy range have been measured using the PHOBOS detector at the BNL Relativistic Heavy-Ion Collider (RHIC). The centrality dependence of both the charged particle distributions and the multiplicity at midrapidity were measured. Pseudorapidity distributions of charged particles emitted with |{eta}|<5.4, which account for between 95% and 99% of the total charged-particle emission associated with collision participants, are presented for different collision centralities. Both the midrapidity density dN{sub ch}/d{eta} and the total charged-particle multiplicity N{sub ch} are found to factorize into a product of independent functions of collision energy, {radical}(s{sub N{sub N}}), and centrality given in terms of the number of nucleons participating in the collision, N{sub part}. The total charged particle multiplicity, observed in these experiments and those at lower energies, assumes a linear dependence of (lns{sub N{sub N}}){sup 2} over the full range of collision energy of {radical}(s{sub N{sub N}})=2.7-200 GeV.


Physical Review Letters | 2001

Charged particle pseudorapidity density distributions from Au+Au collisions at

B. B. Back; W. Kucewicz; Andrzej Olszewski; A. Budzanowski; C. Halliwell; L. Rosenberg; P. Steinberg; M. Reuter; W. Skulski; J.-L. Tang; K. W. Wozniak; C. Henderson; Willis Lin; B. Wyslouch; E. Garcia; C. Reed; I.C. Park; G. van Nieuwenhuizen; A. H. Wuosmaa; Baker; Burt Holzman; C. Vale; G. S. F. Stephans; S. Manly; R. R. Betts; R. Verdier; G.A. Heintzelman; D.S. Barton; P. Sarin; A. Carroll

The charged-particle pseudorapidity density dN(ch)/d eta has been measured for Au+Au collisions at sqrt[s(NN)] = 130 GeV at RHIC, using the PHOBOS apparatus. The total number of charged particles produced for the 3% most-central Au+Au collisions for /eta/<or=5.4 is found to be 4200+/-470. The evolution of dN(ch)/d eta with centrality is discussed, and compared to model calculations and to data from proton-induced collisions. The data show an enhancement in charged-particle production at midrapidity, while in the fragmentation regions, the results are consistent with expectations from pp and pA scattering.


Physical Review Letters | 2003

\sqrt{s_{NN}}

B. B. Back; A. Iordanova; A. Budzanowski; C. Halliwell; J. Zhang; A. Olszewski; P. Steinberg; F.L.H. Wolfs; W. Skulski; B. Wyslouch; K. W. Wozniak; C. Henderson; Willis Lin; E. Garcia; A.S. Harrington; C. Reed; A. A. Bickley; G. van Nieuwenhuizen; A. H. Wuosmaa; Baker; B. Holzman; C. Vale; R. Teng; I. C. Park; Bruce Becker; S. Manly; R. R. Betts; M. Ballintijn; M. B. Tonjes; D.S. Barton

We have measured transverse momentum distributions of charged hadrons produced in d+Au collisions at sqrt[s(NN)]=200 GeV. The spectra were obtained for transverse momenta 0.25<p(T)<6.0 GeV/c, in a pseudorapidity range of 0.2<eta<1.4 in the deuteron direction. The evolution of the spectra with collision centrality is presented in comparison to p+pmacr; collisions at the same collision energy. With increasing centrality, the yield at high transverse momenta increases more rapidly than the overall particle density, leading to a strong modification of the spectral shape. This change in spectral shape is qualitatively different from observations in Au+Au collisions at the same energy. The results provide important information for discriminating between different models for the suppression of high-p(T) hadrons observed in Au+Au collisions.


Physical Review C | 2002

= 130-GeV

B. B. Back; M. Ballintijn; M. D. Baker; D. S. Barton; R.R. Betts; A. Bickley; R. Bindel; A. Budzanowski; W. Busza; Alan S. Carroll; J. Corbo; M.P. Decowski; E. Garcia; N. George; K. Gulbrandsen; S. Gushue; C. Halliwell; J. Hamblen; G. A. Heintzelman; C. Henderson; D. Hicks; D. J. Hofman; R. S. Hollis; R. Hołyński; B. Holzman; A. Iordanova; E. Johnson; J. L. Kane; J. Katzy; N. Khan

The PHOBOS experiment has measured the charged particle multiplicity at mid-rapidity in Au+Au collisions at sqrt(s_NN) = 200 GeV as a function of the collision centrality. Results on dN/deta(eta , are presented as a function of . As was found from similar data at sqrt(s_NN) = 130 GeV, the data can be equally well described by parton saturation models and two-component fits which include contributions that scale as Npart and the number of binary collisions, Ncoll. We compare the data at the two energies by means of the ratio R(200/130) of the charged particle multiplicity for the two different energies as a function of . For events with >100


Physical Review Letters | 2001

Centrality dependence of charged-hadron transverse-momentum spectra in d+Au collisions at sqrt[s(NN)]=200 GeV.

B. B. Back; M. D. Baker; D. S. Barton; R.R. Betts; R. Bindel; A. Budzanowski; W. Busza; Alan S. Carroll; J. Corbo; M.P. Decowski; E. Garcia; N. George; K. Gulbrandsen; S. Gushue; C. Halliwell; J. Hamblen; C. Henderson; D. Hicks; D. J. Hofman; R. S. Hollis; R. Hołyński; B. Holzman; A. Iordanova; E. Johnson; J. L. Kane; J. Katzy; N. Khan; W. Kucewicz; P. Kulinich; Chih-Yu Kuo

, we find that this ratio is consistent with a constant value of 1.14+-0.01(stat.)+-0.05(syst.).


Physical Review C | 2005

Centrality dependence of the charged particle multiplicity near mid-rapidity in Au + Au collisions at

B. B. Back; W. Kucewicz; A. Iordanova; A. Budzanowski; C. Halliwell; Andrzej Olszewski; L. Rosenberg; P. Steinberg; M. Reuter; W. Skulski; J.-L. Tang; K. Wozniak; C. Henderson; Willis Lin; B. Wyslouch; E. García; C. Reed; A. A. Bickley; M. Nguyen; G. van Nieuwenhuizen; Baker; I.C. Park; G. S. F. Stephans; S. Manly; R.R. Betts; M. Ballintijn; R. Verdier; Marguerite Tonjes; G.A. Heintzelman; D.S. Barton

We present the first measurement of the pseudorapidity density of primary charged particles in Au+Au collisions at root square[s(NN)] = 200 GeV. For the 6% most central collisions, we obtain dN(ch)/d(eta)/(/eta/<1) = 650+/-35(syst). Compared to collisions at root square[s(NN)] = 130 GeV, the highest energy studied previously, an increase by a factor of 1.14+/-0.05 at 90% confidence level, is found. The energy dependence of the pseudorapidity density is discussed in comparison with data from proton-induced collisions and theoretical predictions.


Physical Review Letters | 2004

\sqrt{s}

B. B. Back; A. Iordanova; K. W. Wozniak; C. Halliwell; J. Zhang; A. Olszewski; P. Steinberg; F.L.H. Wolfs; W. Skulski; B. Wyslouch; C. Henderson; Willis Lin; E. Garcia; A.S. Harrington; C. Reed; A. A. Bickley; G. van Nieuwenhuizen; Baker; B. Holzman; C. Vale; I. C. Park; Bruce Becker; S. Manly; R. R. Betts; M. Ballintijn; M. B. Tonjes; D.S. Barton; P. Sarin; A. Carroll; W. Busza

This paper describes the measurement of elliptic flow for charged particles in Au+Au collisions at sqrt(sNN)=200 GeV using the PHOBOS detector at the Relativistic Heavy Ion Collider (RHIC). The measured azimuthal anisotropy is presented over a wide range of pseudorapidity for three broad collision centrality classes for the first time at this energy. Two distinct methods of extracting the flow signal were used in order to reduce systematic uncertainties. The elliptic flow falls sharply with increasing eta at 200 GeV for all the centralities studied, as observed for minimum-bias collisions at sqrt(sNN)=130 GeV.

Collaboration


Dive into the W. Skulski's collaboration.

Top Co-Authors

Avatar

C. Halliwell

University of Illinois at Chicago

View shared research outputs
Top Co-Authors

Avatar

C. Henderson

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

D.S. Barton

Brookhaven National Laboratory

View shared research outputs
Top Co-Authors

Avatar

A. Iordanova

University of Illinois at Chicago

View shared research outputs
Top Co-Authors

Avatar

B. B. Back

Argonne National Laboratory

View shared research outputs
Top Co-Authors

Avatar

M. Ballintijn

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

A. A. Bickley

University of Colorado Boulder

View shared research outputs
Top Co-Authors

Avatar

W. Busza

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

A. Carroll

Brookhaven National Laboratory

View shared research outputs
Top Co-Authors

Avatar

S. Gushue

Brookhaven National Laboratory

View shared research outputs
Researchain Logo
Decentralizing Knowledge