Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where W. von Bloh is active.

Publication


Featured researches published by W. von Bloh.


Journal of Climate | 2006

Climate-carbon cycle feedback analysis: Results from the C4MIP model intercomparison

Pierre Friedlingstein; Peter M. Cox; Richard A. Betts; Laurent Bopp; W. von Bloh; Victor Brovkin; P. Cadule; Scott C. Doney; Michael Eby; Inez Y. Fung; G. Bala; Jasmin G. John; Chris D. Jones; Fortunat Joos; Tomomichi Kato; Michio Kawamiya; Wolfgang Knorr; Keith Lindsay; H. D. Matthews; Thomas Raddatz; P. J. Rayner; Christian H. Reick; Erich Roeckner; K.-G. Schnitzler; Reiner Schnur; Kuno M. Strassmann; Andrew J. Weaver; Chisato Yoshikawa; Ning Zeng

Eleven coupled climate–carbon cycle models used a common protocol to study the coupling between climate change and the carbon cycle. The models were forced by historical emissions and the Intergovernmental Panel on Climate Change (IPCC) Special Report on Emissions Scenarios (SRES) A2 anthropogenic emissions of CO2 for the 1850–2100 time period. For each model, two simulations were performed in order to isolate the impact of climate change on the land and ocean carbon cycle, and therefore the climate feedback on the atmospheric CO2 concentration growth rate. There was unanimous agreement among the models that future climate change will reduce the efficiency of the earth system to absorb the anthropogenic carbon perturbation. A larger fraction of anthropogenic CO2 will stay airborne if climate change is accounted for. By the end of the twenty-first century, this additional CO2 varied between 20 and 200 ppm for the two extreme models, the majority of the models lying between 50 and 100 ppm. The higher CO2 levels led to an additional climate warming ranging between 0.1° and 1.5°C. All models simulated a negative sensitivity for both the land and the ocean carbon cycle to future climate. However, there was still a large uncertainty on the magnitude of these sensitivities. Eight models attributed most of the changes to the land, while three attributed it to the ocean. Also, a majority of the models located the reduction of land carbon uptake in the Tropics. However, the attribution of the land sensitivity to changes in net primary productivity versus changes in respiration is still subject to debate; no consensus emerged among the models.


Journal of Climate | 2008

Long-term climate commitments projected with climate-carbon cycle models

Gian-Kasper Plattner; Reto Knutti; Fortunat Joos; Thomas F. Stocker; W. von Bloh; Victor Brovkin; David Cameron; E. Driesschaert; Stephanie Dutkiewicz; Michael Eby; Neil R. Edwards; Thierry Fichefet; J. C. Hargreaves; Chris D. Jones; Marie-France Loutre; H. D. Matthews; Anne Mouchet; S. A. Mueller; S. Nawrath; A.R. Price; Andrei P. Sokolov; Kuno M. Strassmann; Andrew J. Weaver

Eight earth system models of intermediate complexity (EMICs) are used to project climate change commitments for the recent Intergovernmental Panel on Climate Change’s (IPCC’s) Fourth Assessment Report (AR4). Simulations are run until the year 3000 A.D. and extend substantially farther into the future than conceptually similar simulations with atmosphere–ocean general circulation models (AOGCMs) coupled to carbon cycle models. In this paper the following are investigated: 1) the climate change commitment in response to stabilized greenhouse gases and stabilized total radiative forcing, 2) the climate change commitment in response to earlier CO2 emissions, and 3) emission trajectories for profiles leading to the stabilization of atmospheric CO2 and their uncertainties due to carbon cycle processes. Results over the twenty-first century compare reasonably well with results from AOGCMs, and the suite of EMICs proves well suited to complement more complex models. Substantial climate change commitments for sea level rise and global mean surface temperature increase after a stabilization of atmospheric greenhouse gases and radiative forcing in the year 2100 are identified. The additional warming by the year 3000 is 0.6–1.6 K for the low-CO2 IPCC Special Report on Emissions Scenarios (SRES) B1 scenario and 1.3–2.2 K for the high-CO2 SRES A2 scenario. Correspondingly, the post-2100 thermal expansion commitment is 0.3–1.1 m for SRES B1 and 0.5–2.2 m for SRES A2. Sea level continues to rise due to thermal expansion for several centuries after CO2 stabilization. In contrast, surface temperature changes slow down after a century. The meridional overturning circulation is weakened in all EMICs, but recovers to nearly initial values in all but one of the models after centuries for the scenarios considered. Emissions during the twenty-first century continue to impact atmospheric CO2 and climate even at year 3000. All models find that most of the anthropogenic carbon emissions are eventually taken up by the ocean (49%–62%) in year 3000, and that a substantial fraction (15%–28%) is still airborne even 900 yr after carbon emissions have ceased. Future stabilization of atmospheric CO2 and climate change requires a substantial reduction of CO2 emissions below present levels in all EMICs. This reduction needs to be substantially larger if carbon cycle–climate feedbacks are accounted for or if terrestrial CO2 fertilization is not operating. Large differences among EMICs are identified in both the response to increasing atmospheric CO2 and the response to climate change. This highlights the need for improved representations of carbon cycle processes in these models apart from the sensitivity to climate change. Sensitivity simulations with one single EMIC indicate that both carbon cycle and climate sensitivity related uncertainties on projected allowable emissions are substantial.


Water Resources Research | 2011

Impact of reservoirs on river discharge and irrigation water supply during the 20th century

Hester Biemans; I. Haddeland; P. Kabat; F. Ludwig; Ronald W. A. Hutjes; Jens Heinke; W. von Bloh; Dieter Gerten

This paper presents a quantitative estimation of the impact of reservoirs on discharge and irrigation water supply during the 20th century at global, continental, and river basin scale. Compared to a natural situation the combined effect of reservoir operation and irrigation extractions decreased mean annual discharge to oceans and significantly changed the timing of this discharge. For example, in Europe, May discharge decreased by 10%, while in February it increased by 8%. At the end of the 20th century, reservoir operations and irrigation extractions decreased annual global discharge by about 2.1% (930 km3 yr-1). Simulation results show that reservoirs contribute significantly to irrigation water supply in many regions. Basins that rely heavily on reservoir water are the Colorado and Columbia River basins in the United States and several large basins in India, China, and central Asia (e.g., in the Krishna and Huang He basins, reservoirs more than doubled surface water supply). Continents gaining the most are North America, Africa, and Asia, where reservoirs supplied 57, 22, and 360 km3 yr-1 respectively between 1981–2000, which is in all cases 40% more than the availability in the situation without reservoirs. Globally, the irrigation water supply from reservoirs increased from around 18 km3 yr-1 (adding 5% to surface water supply) at the beginning of the 20th century to 460 km3 yr-1 (adding almost 40% to surface water supply) at the end of the 20th century. The analysis is performed using a newly developed and validated reservoir operation scheme within a global-scale hydrology and vegetation model (LPJmL)


Astronomy and Astrophysics | 2007

The habitability of super-Earths in Gliese 581

W. von Bloh; Christine Bounama; M. Cuntz; Siegfried Franck

Aims. The planetary system around the M star Gliese 581 consists of a hot Neptune (Gl 581b) and two super-Earths (Gl 581c and Gl 581d). The habitability of this system with respect to the super-Earths is investigated following a concept that studies the long-term possibility of photosynthetic biomass production on a dynamically active planet. Methods. A thermal evolution model for a super-Earth is used to calculate the sources and sinks of atmospheric carbon dioxide. The habitable zone is determined by the limits of photosynthetic life on the planetary surface. Models with different ratios of land / ocean coverage are investigated. Results. The super-Earth Gl 581c is clearly outside the habitable zone, since it is too close to the star. In contrast, Gl 581d is a tidally locked habitable super-Earth near the outer edge of the habitable zone. Despite the adverse conditions on this planet, at least some primitive forms of life may be able to exist on its surface. Therefore, Gl 581d is an interesting target for the planned TPF/Darwin missions to search for biomarkers in planetary atmospheres.


Global Change Biology | 2015

Leaf and stem economics spectra drive diversity of functional plant traits in a dynamic global vegetation model

Boris Sakschewski; W. von Bloh; Alice Boit; Anja Rammig; Jens Kattge; Lourens Poorter; J. Peñualeas; Kirsten Thonicke

Functional diversity is critical for ecosystem dynamics, stability and productivity. However, dynamic global vegetation models (DGVMs) which are increasingly used to simulate ecosystem functions under global change, condense functional diversity to plant functional types (PFTs) with constant parameters. Here, we develop an individual- and trait-based version of the DGVM LPJmL (Lund-Potsdam-Jena managed Land) called LPJmL- flexible individual traits (LPJmL-FIT) with flexible individual traits) which we apply to generate plant trait maps for the Amazon basin. LPJmL-FIT incorporates empirical ranges of five traits of tropical trees extracted from the TRY global plant trait database, namely specific leaf area (SLA), leaf longevity (LL), leaf nitrogen content (Narea ), the maximum carboxylation rate of Rubisco per leaf area (vcmaxarea), and wood density (WD). To scale the individual growth performance of trees, the leaf traits are linked by trade-offs based on the leaf economics spectrum, whereas wood density is linked to tree mortality. No preselection of growth strategies is taking place, because individuals with unique trait combinations are uniformly distributed at tree establishment. We validate the modeled trait distributions by empirical trait data and the modeled biomass by a remote sensing product along a climatic gradient. Including trait variability and trade-offs successfully predicts natural trait distributions and achieves a more realistic representation of functional diversity at the local to regional scale. As sites of high climatic variability, the fringes of the Amazon promote trait divergence and the coexistence of multiple tree growth strategies, while lower plant trait diversity is found in the species-rich center of the region with relatively low climatic variability. LPJmL-FIT enables to test hypotheses on the effects of functional biodiversity on ecosystem functioning and to apply the DGVM to current challenges in ecosystem management from local to global scales, that is, deforestation and climate change effects.


Tellus B | 2000

Reduction of biosphere life span as a consequence of geodynamics

Siegfried Franck; A. Block; W. von Bloh; Christine Bounama; Hans Joachim Schellnhuber; Yuri M. Svirezhev

The long-term co-evolution of the geosphere’biospere complex from the Proterozoic up to 1.5 billion years into the planet’s future is investigated using a conceptual earth system model including the basic geodynamic processes. The model focusses on the global carbon cycle as mediated by life and driven by increasing solar luminosity and plate tectonics. The main CO2 sink, the weathering of silicates, is calculated as a function of biologic activity, global run-off and continental growth. The main CO2 source, tectonic processes dominated by sea-floor spreading, is determined using a novel semi-empirical scheme. Thus, a geodynamic extension of previous geostatic approaches can be achieved. As a major result of extensive numerical investigations, the “terrestrial life corridor”, i.e., the biogeophysical domain supporting a photosynthesis-based ecosphere in the planetary past and in the future, can be identified. Our findings imply, in particular, that the remaining life-span of the biosphere is considerably shorter (by a few hundred million years) than the value computed with geostatic models by other groups. The “habitablezone concept” is also revisited, revealing the band of orbital distances from the sun warranting earth-like conditions. It turns out that this habitable zone collapses completely in some 1.4 billion years from now as a consequence of geodynamics.


Planetary and Space Science | 2000

Habitable zone for Earth-like planets in the solar system

Siegfried Franck; A. Block; W. von Bloh; Christine Bounama; Hans Joachim Schellnhuber; Yuri M. Svirezhev

Abstract We present a new conceptual Earth system model to investigate the long-term co-evolution of geosphere and biosphere from the geological past upto 1.5 billion years into the planets future. The model is based on the global carbon cycle as mediated by life and driven by increasing solar luminosity and plate tectonics. As a major result of our investigations we calculate the “terrestrial life corridor”, i.e. the biogeophysical domain supporting a photosynthesis-based ecosphere during planetary history and future. Furthermore, we calculate the behavior of our virtual Earth system at various distances from the Sun, using different insolations. In this way, we can find the habitable zone as the band of orbital distances from the Sun within which an Earth-like planet might enjoy moderate surface temperatures and CO2-partial pressures needed for advanced life forms. We calculate an optimum position at 1.08 astronomical units for an Earth-like planet at which the biosphere would realize the maximum life span. According to our results, an Earth-like planet at Martian distance would have been habitable upto about 500 Ma ago while the position of Venus was always outside the habitable zone.


Journal of Geophysical Research | 1991

Multifractal analysis of the microdistribution of elements in sedimentary structures using images from scanning electron microscopy and energy dispersive X ray spectrometry

A. Block; W. von Bloh; Thomas Klenke; Hans Joachim Schellnhuber

A novel method for the quantitative characterization of density distributions of elements in sedimentary geosystems is presented. This general technique is based on the multifractal analysis of image-processed elemental maps obtained by scanning electron microscopy combined with energy dispersive X ray spectrometry. Applications to microdistributions of Si, Fe, and Al in recent bioactive siliciclastic marine sediments are reported. Inhomogeneous scaling behavior of these elemental distributions is observed in all cases. Two main conclusions can be drawn: (1) The sedimentary matrix exhibits true fractal geometry and (2) the processes allocating and rearranging the elements are not of pure stochastic type. Therefore the identification of genetic processes may be possible on the basis of their “multifractal fingerprints”.


Environmental Modeling & Assessment | 1999

Optimisation of global CO2 emission based on a simple model of the carbon cycle

Yu.M. Svirezhev; Victor Brovkin; W. von Bloh; Hans Joachim Schellnhuber; Gerhard Petschel-Held

A simple model has been designed to describe the interaction of climate and biosphere. Carbon dioxide, understood as a major emitted gas, leads to a change of global climate. Economic interpretation of the model is based on the maximisation of the global CO2 cumulative emissions. The two most important profiles of emission have been obtained: optimal and multi-exponential suboptimal profiles, each displaying different characteristics.


Physica A-statistical Mechanics and Its Applications | 1999

Tutorial Modelling of geosphere–biosphere interactions: the effect of percolation-type habitat fragmentation

W. von Bloh; A. Block; M. Parade; Hans Joachim Schellnhuber

A considerably extended two-dimensional version of the famous Lovelock–Watson model for geosphere–biosphere interactions (“Daisyworld”) is employed to investigate the impact of habitat fragmentation. The latter is dynamically modelled through the standard percolation process first introduced by solid state theory. It is found that the connectivity of the space accessible for life is crucial for ecological performance. In particular, the self-stabilizing capacity of the biosphere strongly depends on the fragmentation topology. An extremely rich and partially counter-intuitive eco-dynamics is observed when a simple community structure, consisting of plants and herbivores, is introduced. Quite remarkably, high herbivore vitality destroys the stability of the entire biosphere in a way reminiscent of “desertification”.

Collaboration


Dive into the W. von Bloh's collaboration.

Top Co-Authors

Avatar

Christine Bounama

Potsdam Institute for Climate Impact Research

View shared research outputs
Top Co-Authors

Avatar

Siegfried Franck

Potsdam Institute for Climate Impact Research

View shared research outputs
Top Co-Authors

Avatar

Hans Joachim Schellnhuber

Potsdam Institute for Climate Impact Research

View shared research outputs
Top Co-Authors

Avatar

M. Cuntz

University of Texas at Arlington

View shared research outputs
Top Co-Authors

Avatar

A. Block

Potsdam Institute for Climate Impact Research

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Dieter Gerten

Potsdam Institute for Climate Impact Research

View shared research outputs
Top Co-Authors

Avatar

Kirsten Thonicke

Potsdam Institute for Climate Impact Research

View shared research outputs
Top Co-Authors

Avatar

Yu.M. Svirezhev

Potsdam Institute for Climate Impact Research

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge