Wade Diehl
Pfizer
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Wade Diehl.
Proceedings of the National Academy of Sciences of the United States of America | 2009
Ketan S. Gajiwala; Joe C. Wu; James G. Christensen; Gayatri D. Deshmukh; Wade Diehl; Jonathan P. DiNitto; Jessie M. English; Michael J. Greig; You-Ai He; Suzanne L. Jacques; Elizabeth A. Lunney; Michele McTigue; David Molina; Terri Quenzer; Peter A. Wells; Xiu Yu; Yan Zhang; Aihua Zou; Mark R. Emmett; Alan G. Marshall; Hui-Min Zhang; George D. Demetri
Most gastrointestinal stromal tumors (GISTs) exhibit aberrant activation of the receptor tyrosine kinase (RTK) KIT. The efficacy of the inhibitors imatinib mesylate and sunitinib malate in GIST patients has been linked to their inhibition of these mutant KIT proteins. However, patients on imatinib can acquire secondary KIT mutations that render the protein insensitive to the inhibitor. Sunitinib has shown efficacy against certain imatinib-resistant mutants, although a subset that resides in the activation loop, including D816H/V, remains resistant. Biochemical and structural studies were undertaken to determine the molecular basis of sunitinib resistance. Our results show that sunitinib targets the autoinhibited conformation of WT KIT and that the D816H mutant undergoes a shift in conformational equilibrium toward the active state. These findings provide a structural and enzymologic explanation for the resistance profile observed with the KIT inhibitors. Prospectively, they have implications for understanding oncogenic kinase mutants and for circumventing drug resistance.
Journal of Virology | 2003
Robert A. Love; Hans E. Parge; Xiu Yu; Michael J. Hickey; Wade Diehl; Jingjin Gao; Hilary Wriggers; Anne Ekker; Liann Wang; James Arthur Thomson; Peter S. Dragovich; Shella A. Fuhrman
ABSTRACT The virus-encoded nonstructural protein 5B (NS5B) of hepatitis C virus (HCV) is an RNA-dependent RNA polymerase and is absolutely required for replication of the virus. NS5B exhibits significant differences from cellular polymerases and therefore has become an attractive target for anti-HCV therapy. Using a high-throughput screen, we discovered a novel NS5B inhibitor that binds to the enzyme noncompetitively with respect to nucleotide substrates. Here we report the crystal structure of NS5B complexed with this small molecule inhibitor. Unexpectedly, the inhibitor is bound within a narrow cleft on the proteins surface in the “thumb” domain, about 30 Å from the enzymes catalytic center. The interaction between this inhibitor and NS5B occurs without dramatic changes to the structure of the protein, and sequence analysis suggests that the binding site is conserved across known HCV genotypes. Possible mechanisms of inhibition include perturbation of protein dynamics, interference with RNA binding, and disruption of enzyme oligomerization.
Nature Communications | 2016
Alexei Brooun; Ketan S. Gajiwala; Ya-Li Deng; Wei Liu; Patrick Bingham; You-Ai He; Wade Diehl; Nicole Grable; Pei-Pei Kung; Scott C. Sutton; Karen Maegley; Xiu Yu; Al Stewart
Polycomb repressive complex 2 (PRC2) mediates gene silencing through chromatin reorganization by methylation of histone H3 lysine 27 (H3K27). Overexpression of the complex and point mutations in the individual subunits of PRC2 have been shown to contribute to tumorigenesis. Several inhibitors of the PRC2 activity have shown efficacy in EZH2-mutated lymphomas and are currently in clinical development, although the molecular basis of inhibitor recognition remains unknown. Here we report the crystal structures of the inhibitor-bound wild-type and Y641N PRC2. The structures illuminate an important role played by a stretch of 17 residues in the N-terminal region of EZH2, we call the activation loop, in the stimulation of the enzyme activity, inhibitor recognition and the potential development of the mutation-mediated drug resistance. The work presented here provides new avenues for the design and development of next-generation PRC2 inhibitors through establishment of a structure-based drug design platform.
Journal of Biochemistry | 2010
Jonathan P. DiNitto; Gayatri D. Deshmukh; Yan Zhang; Suzanne L. Jacques; Rocco Coli; Joseph W. Worrall; Wade Diehl; Jessie M. English; Joe C. Wu
The activation of receptor tyrosine kinases (RTKs) is tightly regulated through a variety of mechanisms. Kinetic studies show that activation of c-Kit RTK occurs through an inter-molecular autophosphorylation. Phosphopeptide mapping of c-Kit reveals that 14-22 phosphates are added to each mol of wild-type (WT) c-Kit during the activation. Phosphorylation sites are found on the JM, kinase insert (KID), c-terminal domains and the activation loop (A-loop), but only the sites on the JM domain contribute to the kinase activation. The A-loop tyrosine (Y(823)) is not phosphorylated until very late in the activation (>90% completion), indicating that the A-loop phosphorylation is not required for c-Kit activation. A sunitinib-resistant mutant D816H that accelerates auto-activation by 184-fold shows no phosphorylation on the A-loop tyrosine after full activation. A loss-of-phosphorylation mutation Y823F remains fully competent in auto-activation. Similar to WT and D816H, the unactivated Y823F mutant binds sunitinib and imatinib with high affinity (K(D) = 5.9 nM). But unlike the WT and D816H where the activated enzymes lose the ability to bind the two drugs, activated Y823F binds the two inhibitors effectively. These observations suggest that the A-loop of activated Y823F remains flexible and can readily adopt unactivated conformations to accommodate DFG-out binders.
Biochemistry | 2009
James Solowiej; Simon Bergqvist; Michele McTigue; Tami Marrone; Terri Quenzer; Morena Cobbs; Kevin Ryan; Robert Steven Kania; Wade Diehl; Brion W. Murray
The catalytic domains of protein kinases are commonly treated as independent modular units with distinct biological functions. Here, the interactions between the catalytic and juxtamembrane domains of VEGFR2 are studied. Highly purified preparations of the receptor tyrosine kinase VEGFR2 catalytic domain without (VEGFR2-CD) and with (VEGFR2-CD/JM) the juxtamembrane (JM) domain were characterized by kinetic, biophysical, and structural methods. Although the catalytic parameters for both constructs were similar, the autophosphorylation rate of VEGFR2-CD/JM was substantially faster than VEGFR2-CD. The first event in the autophosphorylation reaction was phosphorylation of JM residue Y801 followed by phosphorylation of activation loop residues in the CD. The rates of activation loop autophosphorylation for the two constructs were determined to be similar. The autophosphorylation rate of Y801 was invariant on enzyme concentration, which is consistent with an intramolecular reaction. In addition, the first biochemical characterization of the advanced clinical compound axitinib is reported. Axitinib was found to have 40-fold enhanced biochemical potency toward VEGFR2-CD/JM (K(i) = 28 pM) compared to VEGFR2-CD, which correlates better with cellular potency. Calorimetric studies, including a novel ITC compound displacement method, confirmed the potency and provided insight into the thermodynamic origin of the potency differences. A structural model for the VEGFR2-CD/JM is proposed based on the experimental findings reported here and on the JM position in c-Kit, FLT3, and CSF1/cFMS. The described studies identify potential functions of the VEGFR2 JM domain with implications to both receptor biology and inhibitor design.
Molecular Cancer Therapeutics | 2016
Ping Chen; Nathan V. Lee; Wenyue Hu; Meirong Xu; Rose Ann Ferre; Hieu Lam; Simon Bergqvist; James Solowiej; Wade Diehl; You-Ai He; Xiu Yu; Asako Nagata; Todd VanArsdale; Brion W. Murray
Therapeutically targeting aberrant intracellular kinase signaling is attractive from a biological perspective but drug development is often hindered by toxicities and inadequate efficacy. Predicting drug behaviors using cellular and animal models is confounded by redundant kinase activities, a lack of unique substrates, and cell-specific signaling networks. Cyclin-dependent kinase (CDK) drugs exemplify this phenomenon because they are reported to target common processes yet have distinct clinical activities. Tumor cell studies of ATP-competitive CDK drugs (dinaciclib, AG-024322, abemaciclib, palbociclib, ribociclib) indicate similar pharmacology while analyses in untransformed cells illuminates significant differences. To resolve this apparent disconnect, drug behaviors are described at the molecular level. Nonkinase binding studies and kinome interaction analysis (recombinant and endogenous kinases) reveal that proteins outside of the CDK family appear to have little role in dinaciclib/palbociclib/ribociclib pharmacology, may contribute for abemaciclib, and confounds AG-024322 analysis. CDK2 and CDK6 cocrystal structures with the drugs identify the molecular interactions responsible for potency and kinase selectivity. Efficient drug binding to the unique hinge architecture of CDKs enables selectivity toward most of the human kinome. Selectivity between CDK family members is achieved through interactions with nonconserved elements of the ATP-binding pocket. Integrating clinical drug exposures into the analysis predicts that both palbociclib and ribociclib are CDK4/6 inhibitors, abemaciclib inhibits CDK4/6/9, and dinaciclib is a broad-spectrum CDK inhibitor (CDK2/3/4/6/9). Understanding the molecular components of potency and selectivity also facilitates rational design of future generations of kinase-directed drugs. Mol Cancer Ther; 15(10); 2273–81. ©2016 AACR.
Protein Science | 2010
Hui Min Zhang; Xiu Yu; Michael J. Greig; Ketan S. Gajiwala; Joe C. Wu; Wade Diehl; Elizabeth A. Lunney; Mark R. Emmett; Alan G. Marshall
Mutations of the receptor tyrosine kinase KIT are linked to certain cancers such as gastrointestinal stromal tumors (GISTs). Biophysical, biochemical, and structural studies have provided insight into the molecular basis of resistance to the KIT inhibitors, imatinib and sunitinib. Here, solution‐phase hydrogen/deuterium exchange (HDX) and direct binding mass spectrometry experiments provide a link between static structure models and the dynamic equilibrium of the multiple states of KIT, supporting that sunitinib targets the autoinhibited conformation of WT‐KIT. The D816H mutation shifts the KIT conformational equilibrium toward the activated state. The V560D mutant exhibits two low energy conformations: one is more flexible and resembles the D816H mutant shifted toward the activated conformation, and the other is less flexible and resembles the wild‐type KIT in the autoinhibited conformation. This result correlates with the V560D mutant exhibiting a sensitivity to sunitinib that is less than for WT KIT but greater than for KIT D816H. These findings support the elucidation of the resistance mechanism for the KIT mutants.
Journal of Medicinal Chemistry | 2016
Pei-Pei Kung; Eugene Rui; Simon Bergqvist; Patrick Bingham; John Frederick Braganza; Michael Raymond Collins; Mei Cui; Wade Diehl; Dac M. Dinh; Connie Fan; Valeria R. Fantin; Hovhannes J. Gukasyan; Wenyue Hu; Buwen Huang; Susan Kephart; Cody Krivacic; Robert Arnold Kumpf; Gary Li; Karen Maegley; Indrawan McAlpine; Lisa Nguyen; Sacha Ninkovic; Martha Ornelas; Michael Ryskin; Stephanie Scales; Scott C. Sutton; John Howard Tatlock; Dominique Verhelle; Fen Wang; Peter A. Wells
A new enhancer of zeste homolog 2 (EZH2) inhibitor series comprising a substituted phenyl ring joined to a dimethylpyridone moiety via an amide linkage has been designed. A preferential amide torsion that improved the binding properties of the compounds was identified for this series via computational analysis. Cyclization of the amide linker resulted in a six-membered lactam analogue, compound 18. This transformation significantly improved the ligand efficiency/potency of the cyclized compound relative to its acyclic analogue. Additional optimization of the lactam-containing EZH2 inhibitors focused on lipophilic efficiency (LipE) improvement, which provided compound 31. Compound 31 displayed improved LipE and on-target potency in both biochemical and cellular readouts relative to compound 18. Inhibitor 31 also displayed robust in vivo antitumor growth activity and dose-dependent de-repression of EZH2 target genes.
Antiviral Research | 2007
Joseph John Binder; Selwyna Tetangco; Megan Weinshank; Karen Maegley; Laura Lingardo; Wade Diehl; Robert Love; Amy K. Patick; George J. Smith
Several potent inhibitors of hepatitis C virus (HCV) NS3/4A protease have been identified that show great clinical potential against genotype 1. Due to the tremendous genetic diversity that exists among HCV isolates, development of broad spectrum inhibitors is challenging. With a limited number of lab strains available for preclinical testing, new tools are required for assessing protease inhibitor activity. We developed a chimeric replicon system for evaluating NS3 protease inhibitor activity against naturally occurring isolates. NS3/4A genes were cloned from the plasma of HCV-infected individuals and inserted into lab strain replicons, replacing the native sequences. The chimeric reporter replicons were transfected into Huh 7.5 cells, their replication monitored by luciferase assays, and their susceptibilities to inhibitors determined. Viable chimeras expressing heterologous genotypes 1, 2, 3, and 4 protease domains were identified that exhibited varying susceptibilities to inhibitors. Protease inhibitor spectrums observed against the chimeric replicon panel strongly correlated with published enzymatic and clinical results. This cell-based chimeric replicon system can be used to characterize the activities of protease inhibitors against diverse natural isolates and may improve the ability to predict dose and clinical efficacy.
Bioorganic & Medicinal Chemistry Letters | 2015
Pei-Pei Kung; Buwen Huang; Luke Raymond Zehnder; John Howard Tatlock; Patrick Bingham; Cody Krivacic; Ketan S. Gajiwala; Wade Diehl; Xiu Yu; Karen Maegley
A series of novel enhancer of zeste homolog 2 (EZH2) inhibitors was designed based on the chemical structure of the histone methyltransferase (HMT) inhibitor SAH (S-adenosyl-l-homocysteine). These nucleoside-based EZH2 inhibitors blocked the methylation of nucleosomes at H3K27 in biochemical assays employing both WT PRC2 complex as well as a Y641N mutant PRC2 complex. The most potent compound, 27, displayed IC50s against both complexes of 270 nM and 70 nM, respectively. To our knowledge, compound 27 is the most potent SAH-derived inhibitor of the EZH2 PRC2 complex yet identified. This compound also displayed improved potency, lipophilic efficiency (LipE), and selectivity profile against other lysine methyltransferases compared with SAH.