Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Elliot S. Gershon is active.

Publication


Featured researches published by Elliot S. Gershon.


Molecular Psychiatry | 2002

Meta-analysis of whole-genome linkage scans of bipolar disorder and schizophrenia

Elliot S. Gershon

Badner and Gershon (2001) presented a technique of meta-analysis of linkage data that could be applied to published genome scans. It combines the reported P-values of individual studies, after correcting each value for the size of the region containing a minimum P-value. Simulations demonstrated that the type I error rate was at least as low as that for a single genome scan and thus genome-wide significance criteria may be applied. Power to detect linkage was at least as high as the power of pooling the data from all the studies. We applied this method to all the published genome scans for bipolar disorder and schizophrenia. We found the strongest evidence for susceptibility loci on 13q (P < 6 × 10−6) and 22q (P < 1 × 10−5) for bipolar disorder, and on 8p (P < 2 × 10−4), 13q (P < 7 × 10−5), and 22q (P < 9 × 10−5) for schizophrenia.


Molecular Psychiatry | 2009

Genome-wide association study of bipolar disorder in European American and African American individuals

Erin N. Smith; Cinnamon S. Bloss; Thomas B. Barrett; Pamela L. Belmonte; Wade H. Berrettini; William Byerley; William Coryell; David Craig; Howard J. Edenberg; Eleazar Eskin; Tatiana Foroud; Elliot S. Gershon; Tiffany A. Greenwood; Maria Hipolito; Daniel L. Koller; William B. Lawson; Chunyu Liu; Falk W. Lohoff; Melvin G. McInnis; Francis J. McMahon; Daniel B. Mirel; Sarah S. Murray; Caroline M. Nievergelt; J. Nurnberger; Evaristus A. Nwulia; Justin Paschall; James B. Potash; John P. Rice; Thomas G. Schulze; W. Scheftner

To identify bipolar disorder (BD) genetic susceptibility factors, we conducted two genome-wide association (GWA) studies: one involving a sample of individuals of European ancestry (EA; n=1001 cases; n=1033 controls), and one involving a sample of individuals of African ancestry (AA; n=345 cases; n=670 controls). For the EA sample, single-nucleotide polymorphisms (SNPs) with the strongest statistical evidence for association included rs5907577 in an intergenic region at Xq27.1 (P=1.6 × 10−6) and rs10193871 in NAP5 at 2q21.2 (P=9.8 × 10−6). For the AA sample, SNPs with the strongest statistical evidence for association included rs2111504 in DPY19L3 at 19q13.11 (P=1.5 × 10−6) and rs2769605 in NTRK2 at 9q21.33 (P=4.5 × 10−5). We also investigated whether we could provide support for three regions previously associated with BD, and we showed that the ANK3 region replicates in our sample, along with some support for C15Orf53; other evidence implicates BD candidate genes such as SLITRK2. We also tested the hypothesis that BD susceptibility variants exhibit genetic background-dependent effects. SNPs with the strongest statistical evidence for genetic background effects included rs11208285 in ROR1 at 1p31.3 (P=1.4 × 10−6), rs4657247 in RGS5 at 1q23.3 (P=4.1 × 10−6), and rs7078071 in BTBD16 at 10q26.13 (P=4.5 × 10−6). This study is the first to conduct GWA of BD in individuals of AA and suggests that genetic variations that contribute to BD may vary as a function of ancestry.


Biological Psychiatry | 2008

Novel Submicroscopic Chromosomal Abnormalities Detected in Autism Spectrum Disorder

Susan L. Christian; Camille W. Brune; Jyotsna Sudi; Ravinesh A. Kumar; Shaung Liu; Samer KaraMohamed; Sei-ichi Matsui; Jeffrey Conroy; Devin McQuaid; James Gergel; Eli Hatchwell; T. Conrad Gilliam; Elliot S. Gershon; Norma J. Nowak; William B. Dobyns; Edwin H. Cook

BACKGROUND One genetic mechanism known to be associated with autism spectrum disorders (ASD) is chromosomal abnormalities. The identification of copy number variants (CNV), i.e., microdeletions and microduplications that are undetectable at the level of traditional cytogenetic analysis, allows the potential association of submicroscopic chromosomal imbalances and human disease. METHODS We performed array comparative genomic hybridization (aCGH) utilizing a 19K whole genome tiling path bacterial artificial chromosome (BAC) microarray on 397 unrelated subjects with autism spectrum disorder. Common CNV were excluded using a control group comprised of 372 individuals from the National Institute of Mental Health (NIMH) Genetics Initiative Control samples. Confirmation studies were performed on all remaining CNV using fluorescence in situ hybridization (FISH), microsatellite analysis, and/or quantitative polymerase chain reaction (PCR) analysis. RESULTS A total of 51 CNV were confirmed in 46 ASD subjects. Three maternal interstitial duplications of 15q11-q13 known to be associated with ASD were identified. The other 48 CNV ranged in size from 189 kilobase (kb) to 5.5 megabase (Mb) and contained from 0 to approximately 40 National Center for Biotechnology Information (NCBI) Reference Sequence (RefSeq) genes. Seven CNV were de novo and 44 were inherited. CONCLUSIONS Fifty-one autism-specific CNV were identified in 46 of 397 ASD patients using a 19K BAC microarray for an overall rate of 11.6%. These microdeletions and microduplications cause gene dosage imbalance in 272 genes, many of which could be considered as candidate genes for autism.


Nature | 2011

Duplications of the neuropeptide receptor gene VIPR2 confer significant risk for schizophrenia

Vladimir Vacic; Shane McCarthy; Dheeraj Malhotra; Fiona Murray; Hsun Hua Chou; Aine Peoples; Vladimir Makarov; Seungtai Yoon; Abhishek Bhandari; Roser Corominas; Lilia M. Iakoucheva; Olga Krastoshevsky; Verena Krause; Verãnica Larach-Walters; David K. Welsh; David Craig; John R. Kelsoe; Elliot S. Gershon; Suzanne M. Leal; Marie Dell Aquila; Derek W. Morris; Michael Gill; Aiden Corvin; Paul A. Insel; Jon McClellan; Mary Claire King; Maria Karayiorgou; Deborah L. Levy; Lynn E. DeLisi; Jonathan Sebat

Rare copy number variants (CNVs) have a prominent role in the aetiology of schizophrenia and other neuropsychiatric disorders. Substantial risk for schizophrenia is conferred by large (>500-kilobase) CNVs at several loci, including microdeletions at 1q21.1 (ref. 2), 3q29 (ref. 3), 15q13.3 (ref. 2) and 22q11.2 (ref. 4) and microduplication at 16p11.2 (ref. 5). However, these CNVs collectively account for a small fraction (2–4%) of cases, and the relevant genes and neurobiological mechanisms are not well understood. Here we performed a large two-stage genome-wide scan of rare CNVs and report the significant association of copy number gains at chromosome 7q36.3 with schizophrenia. Microduplications with variable breakpoints occurred within a 362-kilobase region and were detected in 29 of 8,290 (0.35%) patients versus 2 of 7,431 (0.03%) controls in the combined sample. All duplications overlapped or were located within 89 kilobases upstream of the vasoactive intestinal peptide receptor gene VIPR2. VIPR2 transcription and cyclic-AMP signalling were significantly increased in cultured lymphocytes from patients with microduplications of 7q36.3. These findings implicate altered vasoactive intestinal peptide signalling in the pathogenesis of schizophrenia and indicate the VPAC2 receptor as a potential target for the development of new antipsychotic drugs.


American Journal of Medical Genetics | 1996

A combined analysis of D22S278 marker alleles in affected sib-pairs: Support for a susceptibility locus for schizophrenia at chromosome 22q12

Michael Gill; Homero Vallada; David Collier; Pak Sham; Peter Alan Holmans; Robin M. Murray; Peter McGuffin; Shinichiro Nanko; Michael John Owen; David E. Housman; Haig H. Kazazian; Gerald Nestadt; Ann E. Pulver; Richard E. Straub; Charles J. MacLean; Dermot Walsh; Kenneth S. Kendler; Lynn E. DeLisi; M Polymeropoulos; Hilary Coon; William Byerley; R. Lofthouse; Elliot S. Gershon; L Golden; T.J. Crow; Robert Freedman; Claudine Laurent; S BodeauPean; Thierry d'Amato; Maurice Jay

Several groups have reported weak evidence for linkage between schizophrenia and genetic markers located on chromosome 22q using the lod score method of analysis. However these findings involved different genetic markers and methods of analysis, and so were not directly comparable. To resolve this issue we have performed a combined analysis of genotypic data from the marker D22S278 in multiply affected schizophrenic families derived from 11 independent research groups worldwide. This marker was chosen because it showed maximum evidence for linkage in three independent datasets (Vallada et al., Am J Med Genet 60:139-146, 1995; Polymeropoulos et al., Neuropsychiatr Genet 54:93-99, 1994; Lasseter et al., Am J Med Genet, 60:172-173, 1995. Using the affected sib-pair method as implemented by the program ESPA, the combined dataset showed 252 alleles shared compared with 188 alleles not share (chi-square 9.31, 1df, P = 0.001) where parental genotype data was completely known. When sib-pairs for whom parental data was assigned according to probability were included the number of alleles shared was 514.1 compared with 437.8 not shared (chi-square 6.12, 1df, P = 0.006). Similar results were obtained when a likelihood ratio method for sib-pair analysis was used. These results indicate that may be a susceptibility locus for schizophrenia at 22q12.


American Journal of Medical Genetics | 1997

Initial genome scan of the nimh genetics initiative bipolar pedigrees: Chromosomes 1, 6, 8, 10, and 12

John P. Rice; Alison Goate; Jeff T. Williams; Laura J. Bierut; David Dorr; William Wu; Shantia Shears; Gayathri Gopalakrishnan; Howard J. Edenberg; Tatiana Foroud; John I. Nurnberger; Elliot S. Gershon; Sevilla D. Detera-Wadleigh; Lynn R. Goldin; Juliet J. Guroff; Francis J. McMahon; Sylvia G. Simpson; Dean F. MacKinnon; O. Colin Stine; J. Raymond DePaulo; Mary C. Blehar; Theodore Reich

A report on an initial genome screen on 540 individuals in 97 families was collected as part of the NIMH Genetics Initiative on Bipolar Disorder. Families were ascertained to be informative for genetic linkage and underwent a common ascertainment and assessment protocol at four clinical sites. The sample was genotyped for 65 highly polymorphic markers from chromosomes 1, 6, 8, 10, and 12. The average intermarker interval was 16 cM. Genotypic data was analyzed using affected sib pair, multipoint affected sib pair, and pedigree analysis methods. Multipoint methods gave lod scores of approximately two on chromosomes 1, 6, and 10. The peak lod score on chromosome 6 occurred at the end of the q-arm, at some distance from the 6p24-22 area previously implicated for schizophrenia. We are currently genotyping additional markers to reduce the intermarker interval around the signals. The interpretation of results from a genome screen of a complex disorder and the problem of achieving a balance between detecting false positive results and the ability to detect genes of modest effect are discussed.


Behavior Genetics | 1976

The inheritance of affective disorders: A review of data and of hypotheses

Elliot S. Gershon; E William BunneyJr.; James F. Leckman; Michele Van Eerdewegh; Bette A. DeBauche

A genetic factor in affective disorders is suggested by twin and family history studies. The form of disorder (BP or UP) is transmitted within families. Early onset of affective disorder is associated with increased morbid risk of the disorder in relatives, but age at onset is not itself a transmitted factor. Female relatives have higher prevalence of illness, but sex of the ill person does not appear to be a factor in transmission. Genetic models of multifactorial or single-gene autosomal inheritance are compatible with some but not all of the family history studies reported. The hypothesis of sex-linked transmission of BP illness has been proposed, and some pedigrees compatible with X-linkage have been reported, but family studies do not suggest that this is generally present. Other possible modes of inheritance remain to be tested. Investigative strategies for identification of the “affective genotype” are discussed on the basis of biochemical, pharmacological, or other characteristics of persons with the disorders and their relatives, and on the basis of studies of known linkage markers.


American Journal of Human Genetics | 2003

Genomewide Linkage Analyses of Bipolar Disorder: A New Sample of 250 Pedigrees from the National Institute of Mental Health Genetics Initiative

Danielle M. Dick; Tatiana Foroud; Leah Flury; Elizabeth S. Bowman; Marvin J. Miller; N. Leela Rau; P. Ryan Moe; Nalini Samavedy; Rif S. El-Mallakh; Husseini K. Manji; Debra Glitz; Eric T. Meyer; Carrie Smiley; Rhoda Hahn; Clifford Widmark; Rebecca McKinney; Laura Sutton; Christos Ballas; Dorothy E. Grice; Wade H. Berrettini; William Byerley; William Coryell; R. DePaulo; Dean F. MacKinnon; Elliot S. Gershon; John R. Kelsoe; Francis J. McMahon; Dennis L. Murphy; Theodore Reich; William A. Scheftner

We conducted genomewide linkage analyses on 1,152 individuals from 250 families segregating for bipolar disorder and related affective illnesses. These pedigrees were ascertained at 10 sites in the United States, through a proband with bipolar I affective disorder and a sibling with bipolar I or schizoaffective disorder, bipolar type. Uniform methods of ascertainment and assessment were used at all sites. A 9-cM screen was performed by use of 391 markers, with an average heterozygosity of 0.76. Multipoint, nonparametric linkage analyses were conducted in affected relative pairs. Additionally, simulation analyses were performed to determine genomewide significance levels for this study. Three hierarchical models of affection were analyzed. Significant evidence for linkage (genomewide P<.05) was found on chromosome 17q, with a peak maximum LOD score of 3.63, at the marker D17S928, and on chromosome 6q, with a peak maximum LOD score of 3.61, near the marker D6S1021. These loci met both standard and simulation-based criteria for genomewide significance. Suggestive evidence of linkage was observed in three other regions (genomewide P<.10), on chromosomes 2p, 3q, and 8q. This study, which is based on the largest linkage sample for bipolar disorder analyzed to date, indicates that several genes contribute to bipolar disorder.


PLOS ONE | 2011

Removing batch effects in analysis of expression microarray data: an evaluation of six batch adjustment methods.

Chao Chen; Kay Grennan; Dandan Zhang; Elliot S. Gershon; Li Jin; Chunyu Liu

The expression microarray is a frequently used approach to study gene expression on a genome-wide scale. However, the data produced by the thousands of microarray studies published annually are confounded by “batch effects,” the systematic error introduced when samples are processed in multiple batches. Although batch effects can be reduced by careful experimental design, they cannot be eliminated unless the whole study is done in a single batch. A number of programs are now available to adjust microarray data for batch effects prior to analysis. We systematically evaluated six of these programs using multiple measures of precision, accuracy and overall performance. ComBat, an Empirical Bayes method, outperformed the other five programs by most metrics. We also showed that it is essential to standardize expression data at the probe level when testing for correlation of expression profiles, due to a sizeable probe effect in microarray data that can inflate the correlation among replicates and unrelated samples.


American Journal of Medical Genetics | 1997

Initial genomic scan of the NIMH genetics initiative bipolar pedigrees: Chromosomes 3, 5, 15, 16, 17, and 22

Howard J. Edenberg; Tatiana Foroud; P. Michael Conneally; Jeffrey J. Sorbel; Kristie Carr; Candice Crose; Chris Willig; Jinghua Zhao; Marvin J. Miller; Elizabeth S. Bowman; Aimee Mayeda; N. Leela Rau; Carrie Smiley; John P. Rice; Alison Goate; Theodore Reich; O. Colin Stine; Francis J. McMahon; J. Raymond DePaulo; Deborah A. Meyers; Sevilla D. Detera-Wadleigh; Lynn R. Goldin; Elliot S. Gershon; Mary C. Blehar; John I. Nurnberger

As part of the four-center NIMH Genetics Initiative on Bipolar Disorder we carried out a genomic scan of chromosomes 3, 5, 15, 16,17, and 22. Genotyping was performed on a set of 540 DNAs from 97 families, enriched for affected relative pairs and parents where available. We report here the results of the initial 74 markers that have been typed on this set of DNAs. The average distance between markers (theta) was 12.3 cM. Nonparametric analysis of excess allele sharing among affected sibling pairs used the SIBPAL program of the S.A.G.E. package to test three hierarchical models of affected status. D16S2619 gave some evidence of linkage to bipolar disorder, with P = 0.006 for Model II (in which bipolar 1, bipolar 2 and schizoaffective-bipolar type individuals are considered affected). Nearby markers also showed increased allele sharing. A second interesting region was toward the telomere of chromosome 5q, where D5S1456 and nearby markers showed increased allele sharing; for D5S1456, P = 0.05, 0.015 and 0.008 as the models of affected status become more broad. MOD score analysis also supported the possible presence of a susceptibility locus in this region of chromosome 5. A pair of adjacent markers on chromosome 3, D3S2405 and D3S3038, showed a modest increased allele sharing in the broad model. Several isolated markers had excess allele sharing at the P < 0.05 level under a single model. D15S217 showed a MOD score of 2.37 (P < 0.025). Multipoint analysis flagged the region of chromosome 22 around D22S533 as the most interesting. Thus, several regions showed modest evidence for linkage to bipolar disorder in this initial genomic scan of these chromosomes, including broad regions near previous reports of possible linkage.

Collaboration


Dive into the Elliot S. Gershon's collaboration.

Top Co-Authors

Avatar

Lynn R. Goldin

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Francis J. McMahon

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Chunyu Liu

University of Illinois at Chicago

View shared research outputs
Top Co-Authors

Avatar

Carol A. Tamminga

University of Texas Southwestern Medical Center

View shared research outputs
Top Co-Authors

Avatar

James B. Potash

Roy J. and Lucille A. Carver College of Medicine

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge