Wade Koba
Albert Einstein College of Medicine
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Wade Koba.
Clinical Cancer Research | 2009
Shira Landskroner-Eiger; Binzhi Qian; Eric S. Muise; Andrea R. Nawrocki; Joel P. Berger; Eugene J. Fine; Wade Koba; Yingfeng Deng; Jeffrey W. Pollard; Philipp E. Scherer
Purpose: Adipocytes represent one of the most abundant constituents of the mammary gland. They are essential for mammary tumor growth and survival. Metabolically, one of the more important fat-derived factors (“adipokines”) is adiponectin (APN). Serum concentrations of APN negatively correlate with body mass index and insulin resistance. To explore the association of APN with breast cancer and tumor angiogenesis, we took an in vivo approach aiming to study its role in the mouse mammary tumor virus (MMTV)-polyoma middle T antigen (PyMT) mammary tumor model. Experimental Design: We compared the rates of tumor growth in MMTV-PyMT mice in wild-type and APN-null backgrounds. Results: Histology and micro-positron emission tomography imaging show that the rate of tumor growth is significantly reduced in the absence of APN at early stages. PyMT/APN knockout mice exhibit a reduction in their angiogenic profile resulting in nutrient deprivation of the tumors and tumor-associated cell death. Surprisingly, in more advanced malignant stages of the disease, tumor growth develops more aggressively in mice lacking APN, giving rise to a larger tumor burden, an increase in the mobilization of circulating endothelial progenitor cells, and a gene expression fingerprint indicative of more aggressive tumor cells. Conclusions: These observations highlight a novel important contribution of APN in mammary tumor development and angiogenesis, indicating that APN has potent angio-mimetic properties in tumor vascularization. However, in tumors deprived of APN, this antiangiogenic stress results in an adaptive response that fuels tumor growth through mobilization of circulating endothelial progenitor cells and the development of mechanisms enabling massive cell proliferation despite a chronically hypoxic microenvironment.
Nature Medicine | 2009
Torsten K. Roepke; Elizabeth C. King; Andrea Reyna-Neyra; Monika Paroder; Kerry Purtell; Wade Koba; Eugene J. Fine; Daniel J. Lerner; Nancy Carrasco; Geoffrey W. Abbott
Thyroid dysfunction is a global health concern, causing defects including neurodevelopmental disorders, dwarfism and cardiac arrhythmia. Here, we show that the potassium channel subunits KCNQ1 and KCNE2 form a thyroid-stimulating hormone–stimulated, constitutively active, thyrocyte K+ channel required for normal thyroid hormone biosynthesis. Targeted disruption of Kcne2 in mice impaired thyroid iodide accumulation up to eightfold, impaired maternal milk ejection, halved milk tetraiodothyronine (T4) content and halved litter size. Kcne2-deficient mice had hypothyroidism, dwarfism, alopecia, goiter and cardiac abnormalities including hypertrophy, fibrosis, and reduced fractional shortening. The alopecia, dwarfism and cardiac abnormalities were alleviated by triiodothyronine (T3) and T4 administration to pups, by supplementing dams with T4 before and after they gave birth or by feeding the pups exclusively from Kcne2+/+ dams; conversely, these symptoms were elicited in Kcne2+/+ pups by feeding exclusively from Kcne2−/− dams. These data provide a new potential therapeutic target for thyroid disorders and raise the possibility of an endocrine component to previously identified KCNE2- and KCNQ1-linked human cardiac arrhythmias.
PLOS ONE | 2011
Shankar Mukherjee; Fabiana S. Machado; Huang Huang; Helieh S. Oz; Linda A. Jelicks; Cibele M. Prado; Wade Koba; Eugene J. Fine; Dazhi Zhao; Stephen M. Factor; J. Elias Collado; Louis M. Weiss; Herbert B. Tanowitz; Anthony W. Ashton
Chagas disease, caused by infection with Trypanosoma cruzi, is an important cause of cardiovascular disease. It is increasingly clear that parasite-derived prostaglandins potently modulate host response and disease progression. Here, we report that treatment of experimental T. cruzi infection (Brazil strain) beginning 5 days post infection (dpi) with aspirin (ASA) increased mortality (2-fold) and parasitemia (12-fold). However, there were no differences regarding histopathology or cardiac structure or function. Delayed treatment with ASA (20 mg/kg) beginning 60 dpi did not increase parasitemia or mortality but improved ejection fraction. ASA treatment diminished the profile of parasite- and host-derived circulating prostaglandins in infected mice. To distinguish the effects of ASA on the parasite and host bio-synthetic pathways we infected cyclooxygenase-1 (COX-1) null mice with the Brazil-strain of T. cruzi. Infected COX-1 null mice displayed a reduction in circulating levels of thromboxane (TX)A2 and prostaglandin (PG)F2α. Parasitemia was increased in COX-1 null mice compared with parasitemia and mortality in ASA-treated infected mice indicating the effects of ASA on mortality potentially had little to do with inhibition of prostaglandin metabolism. Expression of SOCS-2 was enhanced, and TRAF6 and TNFα reduced, in the spleens of infected ASA-treated mice. Ablation of the initial innate response to infection may cause the increased mortality in ASA-treated mice as the host likely succumbs more quickly without the initiation of the “cytokine storm” during acute infection. We conclude that ASA, through both COX inhibition and other “off-target” effects, modulates the progression of acute and chronic Chagas disease. Thus, eicosanoids present during acute infection may act as immunomodulators aiding the transition to and maintenance of the chronic phase of the disease. A deeper understanding of the mechanism of ASA action may provide clues to the differences between host response in the acute and chronic T. cruzi infection.
The FASEB Journal | 2012
Kerry Purtell; Monika Paroder-Belenitsky; Andrea Reyna-Neyra; Juan Pablo Nicola; Wade Koba; Eugene J. Fine; Nancy Carrasco; Geoffrey W. Abbott
The KCNQ1 α subunit and the KCNE2 β subunit form a potassium channel in thyroid epithelial cells. Genetic disruption of KCNQ1‐KCNE2 causes hypothyroidism in mice, resulting in cardiac hypertrophy, dwarfism, alopecia, and prenatal mortality. Here, we investigated the mechanistic requirement for KCNQ1‐KCNE2 in thyroid hormone biosynthesis, utilizing whole‐animal dynamic positron emission tomography. The KCNQ1‐specific antagonist (—)‐[3R,4S]‐chromanol 293B (C293B) significantly impaired thyroid cell I− uptake, which is mediated by the Na+/I− symporter (NIS), in vivo (dSUV/dt: vehicle, 0.028±0.004 min−1; 10 mg/kg C293B, 0.009±0.006 min‐1) and in vitro (EC50: 99±10 μM C293B). Na+‐dependent nicotinate uptake by SMCT, however, was unaffected. Kcne2 deletion did not alter the balance of free vs. thyroglobulin‐bound I− in the thyroid (distinguished using ClO4−, a competitive inhibitor of NIS), indicating that KCNQ1‐KCNE2 is not required for Duox/TPO‐mediated I− organification. However, Kcne2 deletion doubled the rate of free I− efflux from the thyroid following ClO4− injection, a NIS‐independent process. Thus, KCNQ1‐KCNE2 is necessary for adequate thyroid cell I− uptake, the most likely explanation being that it is prerequisite for adequate NIS activity.—Purtell, K., Paroder‐Belenitsky, M., Reyna‐Neyra, A., Nicola, J. P., Koba, W., Fine, E., Carrasco, N., Abbott, G. W. The KCNQ1‐KCNE2 K+ channel is required for adequate thyroid I− uptake. FASEB J. 26, 3252–3259 (2012). www.fasebj.org
PLOS Neglected Tropical Diseases | 2012
Jasmin; Linda A. Jelicks; Wade Koba; Herbert B. Tanowitz; Rosalia Mendez-Otero; Antonio Carlos Campos de Carvalho; David C. Spray
Background Chagas disease, resulting from infection with the parasite Trypanosoma cruzi (T. cruzi), is a major cause of cardiomyopathy in Latin America. Drug therapy for acute and chronic disease is limited. Stem cell therapy with bone marrow mesenchymal cells (MSCs) has emerged as a novel therapeutic option for cell death-related heart diseases, but efficacy of MSC has not been tested in Chagas disease. Methods and Results We now report the use of cell-tracking strategies with nanoparticle labeled MSC to investigate migration of transplanted MSC in a murine model of Chagas disease, and correlate MSC biodistribution with glucose metabolism and morphology of heart in chagasic mice by small animal positron emission tomography (microPET). Mice were infected intraperitoneally with trypomastigotes of the Brazil strain of T. cruzi and treated by tail vein injection with MSC one month after infection. MSCs were labeled with near infrared fluorescent nanoparticles and tracked by an in vivo imaging system (IVIS). Our IVIS results two days after transplant revealed that a small, but significant, number of cells migrated to chagasic hearts when compared with control animals, whereas the vast majority of labeled MSC migrated to liver, lungs and spleen. Additionally, the microPET technique demonstrated that therapy with MSC reduced right ventricular dilation, a phenotype of the chagasic mouse model. Conclusions We conclude that the beneficial effects of MSC therapy in chagasic mice arise from an indirect action of the cells in the heart rather than a direct action due to incorporation of large numbers of transplanted MSC into working myocardium.
Proceedings of the National Academy of Sciences of the United States of America | 2011
Melissa E. Smith; Velasco Cimica; Srinivasa Chinni; Suman Jana; Wade Koba; Zhixia Yang; Eugene J. Fine; David Zagzag; Cristina Montagna; Ganjam V. Kalpana
Rhabdoid tumors (RTs) are rare, highly aggressive pediatric malignancies with poor prognosis and with no standard or effective treatment strategies. RTs are characterized by biallelic inactivation of the INI1 tumor suppressor gene. INI1 directly represses CCND1 and activates cyclin-dependent kinase (cdk) inhibitors p16Ink4a and p21CIP. RTs are exquisitely dependent on cyclin D1 for genesis and survival. To facilitate translation of unique therapeutic strategies, we have used genetically engineered, Ini1+/− mice for therapeutic testing. We found that PET can be used to noninvasively and accurately detect primary tumors in Ini1+/− mice. In a PET-guided longitudinal study, we found that treating Ini1+/− mice bearing primary tumors with the pan-cdk inhibitor flavopiridol resulted in complete and stable regression of some tumors. Other tumors showed resistance to flavopiridol, and one of the resistant tumors overexpressed cyclin D1, more than flavopiridol-sensitive cells. The concentration of flavopiridol used was not sufficient to down-modulate the high level of cyclin D1 and failed to induce cell death in the resistant cells. Furthermore, FISH and PCR analyses indicated that there is aneuploidy and increased CCND1 copy number in resistant cells. These studies indicate that resistance to flavopiridol may be correlated to elevated cyclin D1 levels. Our studies also indicate that Ini1+/− mice are valuable tools for testing unique therapeutic strategies and for understanding mechanisms of drug resistance in tumors that arise owing to loss of Ini1, which is essential for developing effective treatment strategies against these aggressive tumors.
Clinical Cancer Research | 2009
Ekaterina Revskaya; Artemio M. Jongco; Rani S. Sellers; Robertha C. Howell; Wade Koba; Allan J. Guimarães; Joshua D. Nosanchuk; Arturo Casadevall; Ekaterina Dadachova
Purpose: Melanin has emerged as an attractive target for radioimmunotherapy (RIT) of melanoma, and a radiolabeled monoclonal antibody (mAb) 6D2 to melanin is currently in clinical evaluation. We investigated two approaches to improve the targeting of radiation to tumors using melanin-binding mAbs: (a) the use of an additional mAb to melanin could provide information on whether using antibodies to melanin can serve as a general approach to development of therapeutics for melanoma, and (b) as melanin targeting involves the antibody binding to extracellular melanin released from necrotic melanoma cells, we hypothesized that the administration of a chemotherapeutic agent followed by RIT would facilitate the delivery of radiation to the tumors due to the increased presence of free melanin. Experimental Design: We evaluated the therapeutic efficacy of two melanin-binding IgM mAbs labeled with 188Re (6D2 and 11B11). We compared the efficacy of RIT with 188Re-6D2 to chemotherapy with dacarbazine (DTIC) and to combined chemotherapy and RIT in human metastatic melanoma-bearing nude mice. Results: Therapeutic efficacy of 188Re-labeled 6D2 and 11B11 was comparable despite differences in their affinity and binding site numbers. Comparison of chemotherapy with DTIC and RIT revealed that RIT was more effective in slowing tumor growth in mice. Administration of DTIC followed by RIT was more effective than either modality alone. Conclusions: These results provide encouragement for the development of RIT for melanoma with melanin-binding mAbs and suggest that combining chemotherapy and RIT may be a promising approach for the treatment of metastatic melanoma.
Surgery | 2012
Thomas J. Quinn; Ziqiang Yuan; Asha Adem; Rula Geha; Chakravarthy Vrikshajanani; Wade Koba; Eugene J. Fine; David T. Hughes; Herbert A. Schmid; Steven K. Libutti
BACKGROUND Pasireotide (SOM230), a long-acting somatostatin analogue (LAR), has improved agonist activity at somatostatin receptors. We tested the effect of SOM230 on insulin secretion, serum glucose concentrations, tumor growth, and survival using an MEN1 transgenic mouse model. METHODS Eight 12-month-old conditional Men1 knockout mice with insulinoma were assessed. The treatment (n = 4) and control groups (n = 4) received monthly subcutaneous injections of SOM230 or PBS. Serum insulin and glucose levels were determined by enzyme-linked immunosorbent assay and enzymatic colorimetric assay, respectively. Tumor activity, growth, and apoptosis were determined by microPET/CT scan and histologic analysis. RESULTS On day 7, there was a decrease in serum insulin levels from 1.06 ± 0.28 μg/L to 0.37 ± 0.17 μg/L (P = .0128) and a significant increase in serum glucose from 4.2 ± 0.45 mmol/L to 7.12 ± 1.06 mmol/L (P = .0075) in the treatment group but no change in the control group. Tumor size was less in the treatment group (2,098 ± 388 μm(2)) compared with the control group (7,067 ± 955 μm(2); P = .0024). Furthermore, apoptosis was increased in the treatment group (6.9 ± 1.23%) compared with the control group (0.29 ± 0.103%; P = .002). CONCLUSION SOM230 demonstrates antisecretory, antiproliferative, and proapoptotic activity in our MEN1 model of insulinoma. Further studies of the effects of SOM230 in PNET patients with MEN1 mutations are warranted.
American Journal of Tropical Medicine and Hygiene | 2009
Cibele M. Prado; Eugene J. Fine; Wade Koba; Dazhi Zhao; Marcos A. Rossi; Herbert B. Tanowitz; Linda A. Jelicks
Noninvasive assessment of cardiac structure and function is essential to understand the natural course of murine infection with Trypanosoma cruzi. Magnetic resonance imaging (MRI) and echocardiography have been used to monitor anatomy and function; positron emission tomography (PET) is ideal for monitoring metabolic events in the myocardium. Mice infected with T. cruzi (Brazil strain) were imaged 15-100 days post infection (dpi). Quantitative (18)F-FDG microPET imaging, MRI and echocardiography were performed and compared. Tracer ((18)F-FDG) uptake was significantly higher in infected mice at all days of infection, from 15 to 100 dpi. Dilatation of the right ventricular chamber was observed by MRI from 30 to 100 dpi in infected mice. Echocardiography revealed significantly reduced ejection fraction by 60 dpi. Combination of these three complementary imaging modalities makes it possible to noninvasively quantify cardiovascular function, morphology, and metabolism from the earliest days of infection through the chronic phase.
PLOS Neglected Tropical Diseases | 2014
Fnu Nagajyothi; Louis M. Weiss; Dazhi Zhao; Wade Koba; Linda A. Jelicks; Min Hui Cui; Stephen M. Factor; Philipp E. Scherer; Herbert B. Tanowitz
Background Trypanosoma cruzi, the causative agent of Chagas disease, has high affinity for lipoproteins and adipose tissue. Infection results in myocarditis, fat loss and alterations in lipid homeostasis. This study was aimed at analyzing the effect of high fat diet (HFD) on regulating acute T. cruzi infection-induced myocarditis and to evaluate the effect of HFD on lipid metabolism in adipose tissue and heart during acute T. cruzi infection. Methodology/Principal Findings CD1 mice were infected with T. cruzi (Brazil strain) and fed either a regular control diet (RD) or HFD for 35 days following infection. Serum lipid profile, tissue cholesterol levels, blood parasitemia, and tissue parasite load were analyzed to evaluate the effect of diet on infection. MicroPET and MRI analysis were performed to examine the morphological and functional status of the heart during acute infection. qPCR and immunoblot analysis were carried out to analyze the effect of diet on the genes involved in the host lipid metabolism during infection. Oil red O staining of the adipose tissue demonstrated reduced lipolysis in HFD compared to RD fed mice. HFD reduced mortality, parasitemia and cardiac parasite load, but increased parasite load in adipocytes. HFD decreased lipolysis during acute infection. Both qPCR and protein analysis demonstrated alterations in lipid metabolic pathways in adipose tissue and heart in RD fed mice, which were further modulated by HFD. Both microPET and MRI analyses demonstrated changes in infected RD murine hearts which were ameliorated by HFD. Conclusion/Significance These studies indicate that Chagasic cardiomyopathy is associated with a cardiac lipidpathy and that both cardiac lipotoxicity and adipose tissue play a role in the pathogenesis of Chagas disease. HFD protected mice from T. cruzi infection-induced myocardial damage most likely due to the effects of HFD on both adipogenesis and T. cruzi infection-induced cardiac lipidopathy.