Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Wagner Zago is active.

Publication


Featured researches published by Wagner Zago.


The Journal of Neuroscience | 2014

Reducing C-Terminal-Truncated Alpha-Synuclein by Immunotherapy Attenuates Neurodegeneration and Propagation in Parkinson's Disease-Like Models

Dora Games; Elvira Valera; Brian Spencer; Edward Rockenstein; Michael Mante; Anthony Adame; Christina Patrick; Kiren Ubhi; Silke Nuber; Patricia Sacayon; Wagner Zago; Peter Seubert; Robin Barbour; Dale Schenk; Eliezer Masliah

Parkinsons disease (PD) and dementia with Lewy bodies (DLB) are common neurodegenerative disorders of the aging population, characterized by progressive and abnormal accumulation of α-synuclein (α-syn). Recent studies have shown that C-terminus (CT) truncation and propagation of α-syn play a role in the pathogenesis of PD/DLB. Therefore, we explored the effect of passive immunization against the CT of α-syn in the mThy1-α-syn transgenic (tg) mouse model, which resembles the striato-nigral and motor deficits of PD. Mice were immunized with the new monoclonal antibodies 1H7, 5C1, or 5D12, all directed against the CT of α-syn. CT α-syn antibodies attenuated synaptic and axonal pathology, reduced the accumulation of CT-truncated α-syn (CT-α-syn) in axons, rescued the loss of tyrosine hydroxylase fibers in striatum, and improved motor and memory deficits. Among them, 1H7 and 5C1 were most effective at decreasing levels of CT-α-syn and higher-molecular-weight aggregates. Furthermore, in vitro studies showed that preincubation of recombinant α-syn with 1H7 and 5C1 prevented CT cleavage of α-syn. In a cell-based system, CT antibodies reduced cell-to-cell propagation of full-length α-syn, but not of the CT-α-syn that lacked the 118–126 aa recognition site needed for antibody binding. Furthermore, the results obtained after lentiviral expression of α-syn suggest that antibodies might be blocking the extracellular truncation of α-syn by calpain-1. Together, these results demonstrate that antibodies against the CT of α-syn reduce levels of CT-truncated fragments of the protein and its propagation, thus ameliorating PD-like pathology and improving behavioral and motor functions in a mouse model of this disease.


PLOS ONE | 2012

Laminin-411 is a vascular ligand for MCAM and facilitates TH17 cell entry into the CNS.

Ken Flanagan; Kent Fitzgerald; Jeanne Baker; Karin Regnstrom; Shyra J. Gardai; Frederique Bard; Simonetta Mocci; Pui Seto; Monica You; Catherine Larochelle; Alexandre Prat; Samuel Chow; Lauri Li; Chris Vandevert; Wagner Zago; Carlos Lorenzana; Christopher Nishioka; Jennifer Hoffman; Raquel Botelho; Christopher Willits; Kevin Tanaka; Jennifer Johnston; Ted Yednock

TH17 cells enter tissues to facilitate pathogenic autoimmune responses, including multiple sclerosis (MS). However, the adhesion molecules involved in the unique migratory capacity of TH17 cells, into both inflamed and uninflamed tissues remain unclear. Herein, we characterize MCAM (CD146) as an adhesion molecule that defines human TH17 cells in the circulation; following in vitro restimulation of human memory T cells, nearly all of the capacity to secrete IL-17 is contained within the population of cells expressing MCAM. Furthermore, we identify the MCAM ligand as laminin 411, an isoform of laminin expressed within the vascular endothelial basement membranes under inflammatory as well as homeotstatic conditions. Purified MCAM-Fc binds to laminin 411 with an affinity of 27 nM, and recognizes vascular basement membranes in mouse and human tissue. MCAM-Fc binding was undetectable in tissue from mice with targeted deletion of laminin 411, indicating that laminin 411 is a major tissue ligand for MCAM. An anti-MCAM monoclonal antibody, selected for inhibition of laminin binding, as well as soluble MCAM-Fc, inhibited T cell adhesion to laminin 411 in vitro. When administered in vivo, the antibody reduced TH17 cell infiltration into the CNS and ameliorated disease in an animal model of MS. Our data suggest that MCAM and laminin 411 interact to facilitate TH17 cell entry into tissues and promote inflammation.


PLOS ONE | 2014

Targeting the Intrinsically Disordered Structural Ensemble of α-Synuclein by Small Molecules as a Potential Therapeutic Strategy for Parkinson’s Disease

Gergely Toth; Shyra J. Gardai; Wagner Zago; Carlos W. Bertoncini; Nunilo Cremades; Susan L. Roy; Mitali A. Tambe; Jean-Christophe Rochet; Céline Galvagnion; Gaia Skibinski; Steven Finkbeiner; Michael P. Bova; Karin Regnstrom; San-San Chiou; Jennifer J. Johnston; Kari Callaway; John P. Anderson; Michael F. Jobling; Alexander K. Buell; Ted Yednock; Tuomas P. J. Knowles; Michele Vendruscolo; John Christodoulou; Christopher M. Dobson; Dale Schenk; Lisa McConlogue

The misfolding of intrinsically disordered proteins such as α-synuclein, tau and the Aβ peptide has been associated with many highly debilitating neurodegenerative syndromes including Parkinson’s and Alzheimer’s diseases. Therapeutic targeting of the monomeric state of such intrinsically disordered proteins by small molecules has, however, been a major challenge because of their heterogeneous conformational properties. We show here that a combination of computational and experimental techniques has led to the identification of a drug-like phenyl-sulfonamide compound (ELN484228), that targets α-synuclein, a key protein in Parkinson’s disease. We found that this compound has substantial biological activity in cellular models of α-synuclein-mediated dysfunction, including rescue of α-synuclein-induced disruption of vesicle trafficking and dopaminergic neuronal loss and neurite retraction most likely by reducing the amount of α-synuclein targeted to sites of vesicle mobilization such as the synapse in neurons or the site of bead engulfment in microglial cells. These results indicate that targeting α-synuclein by small molecules represents a promising approach to the development of therapeutic treatments of Parkinson’s disease and related conditions.


The Journal of Neuroscience | 2012

Neutralization of Soluble, Synaptotoxic Amyloid β Species by Antibodies Is Epitope Specific

Wagner Zago; Manuel Buttini; Thomas A. Comery; Christopher Nishioka; Shyra J. Gardai; Peter Seubert; Dora Games; Frederique Bard; Dale Schenk; Gene G. Kinney

Several anti-amyloid β (Aβ) antibodies are under evaluation for the treatment of Alzheimers disease (AD). Clinical studies using the N-terminal-directed anti-Aβ antibody bapineuzumab have demonstrated reduced brain PET-Pittsburg-B signals, suggesting the reduction of Aβ plaques, and reduced levels of total and phosphorylated tau protein in the CSF of treated AD patients. Preclinical studies using 3D6 (the murine form of bapineuzumab) have demonstrated resolution of Aβ plaque and vascular burdens, neuritic dystrophy, and preservation of synaptic density in the transgenic APP mouse models. In contrast, few studies have evaluated the direct interaction of this antibody with synaptotoxic soluble Aβ species. In the current report, we demonstrated that 3D6 binds to soluble, synaptotoxic assemblies of Aβ1–42 and prevents multiple downstream functional consequences in rat hippocampal neurons including changes in glutamate AMPA receptor trafficking, AD-type tau phosphorylation, and loss of dendritic spines. In vivo, we further demonstrated that 3D6 prevents synaptic loss and acutely reverses the behavioral deficit in the contextual fear conditioning task in transgenic mouse models of AD, two endpoints thought to be linked to synaptotoxic soluble Aβ moieties. Importantly C-terminal anti-Aβ antibodies were ineffective on these endpoints. These results, taken with prior studies, suggest that N-terminal anti-Aβ antibodies effectively interact with both soluble and insoluble forms of Aβ and therefore appear particularly well suited for testing the Aβ hypothesis of AD.


Molecular and Cellular Neuroscience | 2006

BDNF up-regulates α7 nicotinic acetylcholine receptor levels on subpopulations of hippocampal interneurons

Kerri A. Massey; Wagner Zago; Darwin K. Berg

In the hippocampus, brain-derived neurotrophic factor (BDNF) regulates a number of synaptic components. Among these are nicotinic acetylcholine receptors containing alpha7 subunits (alpha7-nAChRs), which are interesting because of their relative abundance in the hippocampus and their high relative calcium permeability. We show here that BDNF elevates surface and intracellular pools of alpha7-nAChRs on cultured hippocampal neurons and that glutamatergic activity is both necessary and sufficient for the effect. Blocking transmission through NMDA receptors with APV blocked the BDNF effect; increasing spontaneous excitatory activity with the GABA(A) receptor antagonist bicuculline replicated the BDNF effect. BDNF antibodies blocked the BDNF-mediated increase but not the bicuculline one, consistent with enhanced glutamatergic activity acting downstream from BDNF. Increased alpha7-nAChR clusters were most prominent on interneuron subtypes known to directly innervate excitatory neurons. The results suggest that BDNF, acting through glutamatergic transmission, can modulate hippocampal output in part by controlling alpha7-nAChR levels.


Movement Disorders | 2017

First‐in‐human assessment of PRX002, an anti–α‐synuclein monoclonal antibody, in healthy volunteers

Dale Schenk; Martin Koller; Daniel K. Ness; Sue G. Griffith; Michael Grundman; Wagner Zago; Jay Soto; George Atiee; Susanne Ostrowitzki; Gene G. Kinney

Background: α‐Synuclein is a major component of pathologic inclusions that characterize Parkinsons disease. PRX002 is an antibody that targets α‐synuclein, and its murine parent antibody 9E4 has been shown in preclinical studies to reduce α‐synuclein pathology and to protect against cognitive and motor deteriorations and progressive neurodegeneration in human α‐synuclein transgenic mice. Methods: This first‐in‐human, randomized, double‐blind, placebo‐controlled, phase 1 study assessed the impact of PRX002 administered to 40 healthy participants in 5 ascending‐dose cohorts (n = 8/cohort) in which participants were randomly assigned to receive a single intravenous infusion of study drug (0.3, 1, 3, 10, or 30 mg/kg; n = 6/cohort) or placebo (n = 2/cohort). Results: PRX002 demonstrated favorable safety, tolerability, and pharmacokinetic profiles at all doses tested, with no immunogenicity. No serious adverse events, discontinuations as a result of adverse events, or dose‐limiting toxicities were reported. Serum PRX002 exposure was dose proportional; the average terminal half‐life across all doses was 18.2 days. A significant dose‐dependent reduction in free serum α‐synuclein (unbound to PRX002) was apparent within 1 hour after PRX002 administration, whereas total α‐synuclein (free plus bound) increased dose‐dependently, presumably because of the expected change in kinetics following antibody binding. Conclusions: This study demonstrates that serum α‐synuclein can be safely modulated in a dose‐dependent manner after single intravenous infusions of an anti–α‐synuclein antibody. These findings support continued development of PRX002, including further characterization of its safety, tolerability, pharmacokinetics, and pharmacodynamic effects in the central nervous system in patients with Parkinsons disease.


Molecular and Cellular Neuroscience | 2006

Nicotinic activity stabilizes convergence of nicotinic and GABAergic synapses on filopodia of hippocampal interneurons.

Wagner Zago; Kerri A. Massey; Darwin K. Berg

Nicotinic acetylcholine receptors containing alpha7 subunits occupy pre- and postsynaptic sites in the adult hippocampus. We find that embryonic hippocampal slices in culture display the receptors most prominently on interneurons where they form clusters localized in part on filopodia. The receptors often co-distribute specifically with GABAA receptors. In septal-hippocampal co-cultures, the filopodia become co-innervated by cholinergic and GABAergic terminals abutting the receptor clusters. Nicotinic transmission appears to stabilize the cholinergic contacts: pharmacological blockade of the alpha7-containing nicotinic receptors increases the rate of filopodia movement and decreases the incidence of the clusters being adjacent to cholinergic terminals. Immunostaining fresh hippocampal slices from neonatal rat pups confirms that cholinergic and GABAergic terminals contact alpha7-containing nicotinic receptor clusters in vivo, and the clusters appear to include filopodial sites. The results indicate a convergence of nicotinic and GABAergic input at specific sites on developing hippocampal interneurons and suggest that synaptic activity helps stabilize the nicotinic contribution.


Journal of Molecular Neuroscience | 2006

Nicotinic signal transduction machinery

Darwin K. Berg; William G. Conroy; Zhaoping Liu; Wagner Zago

Nicotinic synapses employ acetylcholine to activate ligand-gated ion channels that are cation-selective in vertebrates. Although the resulting nicotinic cholinergic transmission is famously excitatory at the neuromuscular junction, it plays many additional roles in the CNS. Most prevalent is that of modulation, usually involving calcium and signal transduction. Because of this, it is becoming increasingly important not only to understand the mechanisms that guide nicotinic receptors to appropriate locations but also to identify the postsynaptic machinery making possible the requisite signal transduction. Clearly, the kinds of components tethered in the vicinity of the receptor will assume a major role in determining the consequences of receptor activation. One of the most abundant and interesting nicotinic receptors in this respect is the species comprised of the alpha7 gene product (Broide and Leslie, 1999). These alpha7 homopentameric nicotinic acetylcholine receptors (alpha7 nAChRs) have a high relative permeability to calcium, rivaling that of NMDA receptors. But unlike NMDA receptors, alpha7 nAChRs promote calcium influx without requiring a coincident event such as membrane depolarization. As a result, the receptors are well equipped to regulate calcium-dependent events in neurons, particularly when depolarization might be occluded.


Journal of Biomolecular Screening | 2012

Quantifying Amyloid Beta (Aβ)–Mediated Changes in Neuronal Morphology in Primary Cultures: Implications for Phenotypic Screening

Lan Nguyen; Sarah Wright; Michael K. Lee; Zhao Ren; John-Michael Sauer; Wherly P. Hoffman; Wagner Zago; Gene G. Kinney; Michael P. Bova

Alzheimer’s disease (AD) is a devastating neurodegenerative disease affecting millions of people. The amyloid hypothesis suggests that the pathogenesis of AD is related to the accumulation of amyloid beta (Aβ) in the brain. Herein, the authors quantify Aβ-mediated changes in neuronal morphology in primary cultures using the Cellomics neuronal profiling version 3.5 (NPv3.5) BioApplication. We observed that Aβ caused a 33% decrease in neurite length in primary human cortical cultures after 24 h of treatment compared with control-treated cultures. We also determined that quantifying changes of neuronal morphology was a more sensitive indicator of nonlethal cell injury than traditional cytotoxicity assays. Aβ-mediated neuronal deficits observed in human cortical cultures were also observed in primary rat hippocampal cultures, where we demonstrated that the integrin-blocking antibody, 17E6, completely abrogated Aβ-mediated cytotoxicity. Finally, we showed that Aβ challenge to 21 days in vitro rat hippocampal cultures reduced synapsin staining to 14% of control-treated cultures. These results are consistent with the finding that loss of presynaptic integrity is one of the initial deficits observed in AD. The implementation of phenotypic screens to identify compounds that block Aβ-mediated cytotoxicity in primary neuronal cultures may lead to the development of novel strategies to prevent AD.


Amyloid | 2016

2A4 binds soluble and insoluble light chain aggregates from AL amyloidosis patients and promotes clearance of amyloid deposits by phagocytosis (

Mark Renz; Ronald Torres; Philip J. Dolan; Stephen J. Tam; Jose R. Tapia; Lauri Li; Joshua Salmans; Robin Barbour; Paul J. Shughrue; Tarlochan Nijjar; Dale Schenk; Gene G. Kinney; Wagner Zago

Abstract Amyloid light chain (AL) amyloidosis is characterized by misfolded light chain (LC) (amyloid) deposition in various peripheral organs, leading to progressive dysfunction and death. There are no regulatory agency–approved treatments for AL amyloidosis, and none of the available standard of care approaches directly targets the LC protein that constitutes the amyloid. NEOD001, currently in late-stage clinical trials, is a conformation-specific, anti-LC antibody designed to specifically target misfolded LC aggregates and promote phagocytic clearance of AL amyloid deposits. The present study demonstrated that the monoclonal antibody 2A4, the murine form of NEOD001, binds to patient-derived soluble and insoluble LC aggregates and induces phagocytic clearance of AL amyloid in vitro. 2A4 specifically labeled all 21 fresh-frozen organ samples studied, which were derived from 10 patients representing both κ and λ LC amyloidosis subtypes. 2A4 immunoreactivity largely overlapped with thioflavin T–positive labeling, and 2A4 bound both soluble and insoluble LC aggregates extracted from patient tissue. Finally, 2A4 induced macrophage engagement and phagocytic clearance of AL amyloid deposits in vitro. These findings provide further evidence that 2A4/NEOD001 can effectively clear and remove human AL-amyloid from tissue and further support the rationale for the evaluation of NEOD001 in patients with AL amyloidosis.

Collaboration


Dive into the Wagner Zago's collaboration.

Top Co-Authors

Avatar

Tarlochan Nijjar

Lawrence Berkeley National Laboratory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Darwin K. Berg

University of California

View shared research outputs
Top Co-Authors

Avatar

Ted Yednock

Technion – Israel Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yue Liu

University of Münster

View shared research outputs
Top Co-Authors

Avatar

Anthony Adame

University of California

View shared research outputs
Top Co-Authors

Avatar

Brian Spencer

University of California

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge