Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Wai-Hung Lo is active.

Publication


Featured researches published by Wai-Hung Lo.


Chemosphere | 1999

A COMPARATIVE INVESTIGATION ON THE BIOSORPTION OF LEAD BY FILAMENTOUS FUNGAL BIOMASS

Wai-Hung Lo; Hong Chua; Kim-Hung Lam; Shu-Ping Bi

The removal of lead from aqueous solutions by adsorption on filamentous fungal biomass was studied. Batch biosorption experiments were performed to screen a series of selected fungal strains for effective lead removal at different metal and biomass concentrations. Biosorption of the Pb2+ ions was strongly affected by pH. The fungal biomass exhibited the highest lead adsorption capacity at pH 6. Isotherms for the biosorption of lead on fungal biomass were developed and the equilibrium data fitted well to the Langmuir isotherm model. At pH 6, the maximum lead biosorption capacity of Mucor rouxii estimated with the Langmuir model was 769 mg/g dry biomass, significantly higher than that of most microorganisms. Biomass of Mucor rouxii showed specific selectivity for Pb2+ over other metals ions such as Zn2+, Ni2+ and Cu2+. This fungal strain may be applied to develop potentially cost-effective biosorbent for removing lead from effluents. The technique of scanning electron microscopy coupled with X-ray dispersion analysis shows that Pb2+ has exchanged with K+ and Ca2+ on the cell wall of Mucor rouxii, thereby suggesting ion exchange as one of the dominant mechanisms of metal biosorption for this fungal strain.


Cancer Research | 2007

Pegylated Recombinant Human Arginase (rhArg-peg5,000mw) Inhibits the In vitro and In vivo Proliferation of Human Hepatocellular Carcinoma through Arginine Depletion

Paul Ning-Man Cheng; Tin-Lun Lam; Wai-Man Lam; Sam-Mui Tsui; Anthony Wai-Ming Cheng; Wai-Hung Lo; Yun-Chung Leung

Hepatocellular carcinoma (HCC) is believed to be auxotrophic for arginine through the lack of expression of argininosuccinate synthetase (ASS). The successful use of the arginine-depleting enzyme arginine deiminase (ADI) to treat ASS-deficient tumors has opened up new possibilities for effective cancer therapy. Nevertheless, many ASS-positive HCC cell lines are found to be resistant to ADI treatment, although most require arginine for proliferation. Thus far, an arginine-depleting enzyme for killing ASS-positive tumors has not been reported. Here, we provide direct evidence that recombinant human arginase (rhArg) inhibits ASS-positive HCCs. All the five human HCC cell lines we used were sensitive to rhArg but ADI had virtually no effect on these cells. They all expressed ASS, but not ornithine transcarbamylase (OTC), the enzyme that converts ornithine, the product of degradation of arginine with rhArg, to citrulline, which is converted back to arginine via ASS. Transfection of HCC cells with OTC resulted in resistance to rhArg. Thus, OTC expression alone may be sufficient to induce rhArg resistance in ASS-positive HCC cells. This surprising correlation between the lack of OTC expression and sensitivity of ASS-positive HCC cells shows that OTC-deficient HCCs are sensitive to rhArg-mediated arginine depletion. Therefore, pretreatment tumor gene expression profiling of ASS and OTC could aid in predicting tumor response to arginine depletion with arginine-depleting enzymes. We have also shown that the rhArg native enzyme and the pegylated rhArg (rhArg-peg(5,000mw)) gave similar anticancer efficacy in vitro. Furthermore, the growth of the OTC-deficient Hep3B tumor cells (ASS-positive and ADI-resistant) in mice was inhibited by treatment with rhArg-peg(5,000mw), which is active alone and is synergistic in combination with 5-fluorouracil. Thus, our data suggest that rhArg-peg(5,000mw) is a novel agent for effective cancer therapy.


Environment International | 2001

Assessment of heavy metal cations in sediments of Shing Mun River, Hong Kong.

S.N. Sin; H. Chua; Wai-Hung Lo; Lm Ng

The extent of heavy metal cation contamination in the Shing Mun River has been assessed. Sediment samples were taken at eight strategic locations along the river system. The highest concentrations of copper (Cu, 1.66 mg/g), lead (Pb, 0.354 mg/g), zinc (Zn, 2.2 mg/g) and chromium (Cr, 0.047 mg/g) were found in the Fo Tan Nullah, a major tributary of the Shing Mun River. The highest concentrations of aluminum (114 mg/g) and cadmium (Cd, 0.047 mg/g) were found in the Shing Mun Main River Channel. These contaminated sediments, accumulated over the years on the river bed, could act as secondary sources of pollution to the overlying water column in the river.


Water Research | 2009

Removal of refractory compounds from stabilized landfill leachate using an integrated H2O2 oxidation and granular activated carbon (GAC) adsorption treatment.

Tonni Agustiono Kurniawan; Wai-Hung Lo

This study investigated the treatment performances of H(2)O(2) oxidation alone and its combination with granular activated carbon (GAC) adsorption for raw leachate from the NENT landfill (Hong Kong) with a very low biodegradability ratio (BOD(5)/COD) of 0.08. The COD removal of refractory compounds (as indicated by COD values) by the integrated H(2)O(2) and GAC treatment was evaluated, optimized and compared to that by H(2)O(2) treatment alone with respect to dose, contact time, pH, and biodegradability ratio. At an initial COD concentration of 8000 mg/L and NH(3)-N of 2595 mg/L, the integrated treatment has substantially achieved a higher removal (COD: 82%; NH(3)-N: 59%) than the H(2)O(2) oxidation alone (COD: 33%; NH(3)-N: 4.9%) and GAC adsorption alone (COD: 58%) at optimized experimental conditions (p< or =0.05; t-test). The addition of an Fe(II) dose at 1.8 g/L further improved the removal of refractory compounds by the integrated treatment from 82% to 89%. Although the integrated H(2)O(2) oxidation and GAC adsorption could treat leachate of varying strengths, treated effluents were unable to meet the local COD limit of less than 200 mg/L and the NH(3)-N of lower than 5 mg/L. However, the integrated treatment significantly improved the biodegradability ratio of the treated leachate by 350% from 0.08 to 0.36, enabling the application of subsequent biological treatments for complementing the degradation of target compounds in the leachate prior to their discharge.


Chemosphere | 2011

Degradation of chelating agents in aqueous solution using advanced oxidation process (AOP)

Mika Sillanpää; Tonni Agustiono Kurniawan; Wai-Hung Lo

This article presents an overview with critical analysis of technical applicability of advanced oxidation process (AOP) in removing chelating agents from aqueous solution. Apart from the effect of metals for chelating agents as a major influencing factor, selected information such as pH, oxidants dose, concentrations of pollutants and treatment performance is presented. The performance of individual AOP is compared. It is evident from our literature survey that photocatalysis with UV irradiation alone or coupled with TiO(2), ozonation and Fentons oxidation are frequently applied to mineralize target pollutants. Overall, the selection of the most suitable AOP depends on the characteristics of effluents, technical applicability, discharge standard, regulatory requirements and environmental impacts.


Environment International | 2001

Nutrient release and sediment oxygen demand in a eutrophic land-locked embayment in Hong Kong

W.F Hu; Wai-Hung Lo; H. Chua; S.N. Sin; P. H. F. Yu

Tolo Harbour is a large eutrophic land-locked estuarine embayment in Hong Kong. The rapid urbanization, commercio-industrial activities and lack of legislative control around the Tolo catchment produced large quantities of untreated or partially treated municipal sewage, agricultural wastes and cottage industrial effluents which were discharged into Tolo Harbour via rivers and watercourses. Control measures were implemented to reduce the external nutrient loading into the harbour since the early 1980s. Nutrient data for the period 1982 to 1997 were analyzed for temporal trends. Over the period of observation, the total inorganic nitrogen and total phosphorus both show an increasing trend, despite a decade of efforts in reducing nutrient loading. The release rates of potentially mobile nitrogen (N) and phosphorus (P) from the sediments collected from Tolo Harbour were determined by N and P release experiments under oxic conditions. The experimental results showed that the sediment released significant amount of nutrients, especially orthophosphates and ammonia nitrogen. The maximum release rates were 15.0 and 206.0 mg/m2/day, respectively. Although the external nutrient loading has been reduced, nutrients could gradually be released back into the water column from the contaminated sediments and delay improvement of the water quality.


Pigment Cell & Melanoma Research | 2011

Recombinant human arginase inhibits the in vitro and in vivo proliferation of human melanoma by inducing cell cycle arrest and apoptosis.

Tin-Lun Lam; Gabriel Kun Yung Wong; Ho-Yin Chow; Hiu-Chi Chong; Tsz-Lung Chow; Sui-Yi Kwok; Paul Ning-Man Cheng; Denys N. Wheatley; Wai-Hung Lo; Yun-Chung Leung

Melanoma has been shown to require arginine for growth, thus providing a potential Achilles’ heel for therapeutic exploitation. Our investigations show that arginine depletion, using a recombinant form of human arginase I (rhArg), efficiently inhibits the growth of mammalian melanoma cell lines in vitro. These cell lines are consistently deficient in ornithine transcarbamylase (OTC) expression, correlating with their sensitivity to rhArg. Cell cycle distribution of A375 human melanoma cells treated with rhArg showed a remarkable dual‐phase cell cycle arrest in S and G2/M phases, in contrast to the G2/M single‐phase arrest observed with arginine deiminase (ADI), another arginine‐degrading enzyme. rhArg and ADI both induced substantial apoptosis in A375 cells, accompanied by global modulation of cell cycle‐ and apoptosis‐related transcription. Moreover, PEGylated rhArg dramatically inhibited the growth of A375 and B16 melanoma xenografts in vivo. Our results establish for the first time that (PEGylated) rhArg is a promising candidate for effective melanoma treatment, with fewer safety issues than ADI. Insight into the mechanism behind the antiproliferative activity of rhArg could inform us in designing combination therapies for future clinical trials.


Cancer Letters | 2009

Recombinant human arginase inhibits proliferation of human hepatocellular carcinoma by inducing cell cycle arrest

Tin-Lun Lam; Gabriel Kun Yung Wong; Hiu-Chi Chong; P.N.M. Cheng; S.C. Choi; T.L. Chow; Sui-Yi Kwok; Ronnie Tung-Ping Poon; Denys N. Wheatley; Wai-Hung Lo; Yun-Chung Leung

Human hepatocellular carcinoma (HCC) has an elevated requirement for arginine in vitro, and pegylated recombinant human arginase I (rhArg-PEG), an arginine-depleting enzyme, can inhibit the growth of arginine-dependent tumors. While supplementation of the culture medium with ornithine failed to rescue Hep3B cells from growth inhibition induced by rhArg-PEG, citrulline successfully restored cell growth. The data support the roles previously proposed for ornithine transcarbamylase (OTC) in the arginine auxotrophy and rhArg-PEG sensitivity of HCC cells. Expression profiling of argininosuccinate synthetase (ASS), argininosuccinate lyase (ASL) and OTC in 40 HCC tumor biopsy specimens predicted that 16 of the patients would be rhArg-sensitive, compared with 5 who would be sensitive to arginine deiminase (ADI), another arginine-depleting enzyme with anti-tumor activity. Furthermore, rhArg-PEG-mediated deprivation of arginine from the culture medium of different HCC cell lines produced cell cycle arrests at the G(2)/M or S phase, possibly mediated by transcriptional modulation of cyclins and/or cyclin dependent kinases (CDKs). Based on these results, together with further validation of the in vivo efficacy of rhArg-PEG against HCC, we propose that the application of rhArg-PEG alone or in combination with existing chemotherapeutic drugs may represent a specific and effective therapeutic strategy against HCC.


Journal of Environmental Monitoring | 2010

Biological processes for treatment of landfill leachate

Tonni Agustiono Kurniawan; Wai-Hung Lo; Gilbert Y.S. Chan; Mika Sillanpää

This review presents an overview with critical analysis of the technical applicability of biological treatments for landfill leachate. A particular focus is given to activated sludge (AS), sequencing batch reactors (SBR), aerated lagoons (AL), and upflow anaerobic sludge blankets (UASB). Their advantages and limitations in application are evaluated. Selected information is presented such as pH, hydraulic retention time (HRT), organic loading rate (OLR), characteristics of leachate and treatment performance. It is evident from the literature survey of 188 papers (1976-2010) that none of the individual biological treatments presented is universally applicable for removing recalcitrant contaminants from leachate. Among the biological treatments reviewed, AS, SBR and UASB are the most frequently applied. These treatments are effective not only to remove over 90% of COD with a concentration ranging from 3500-26u2009000 mg L(-1), but also to achieve 80% of NH(3)-N removal with a concentration ranging from 100-1000 mg L(-1). A combination of physico-chemical and biological treatment into an integrated process is effective for leachate treatment. Almost complete removal of COD and NH(3)-N was reported for combined reverse osmosis (RO) and UASB with an initial COD concentration of 35u2009000 mg L(-1) and NH(3)-N concentration of 1600 mg L(-1). Integrated Fentons oxidation and AS could achieve about 98% and 99% of COD and NH(3)-N removal, respectively, with initial COD and NH(3)-N concentrations of 7000 mg L(-1) and 1800 mg L(-1). Overall, the selection of the most suitable treatment for leachate depends on its characteristics, technical applicability and potential constraints, effluent limit required, cost-effectiveness, regulatory requirements and long-term environmental impacts.


Applied Biochemistry and Biotechnology | 1998

Conversion of Food Industrial Wastes into Bioplastics

P. H. F. Yu; Hong Chua; A. L. Huang; Wai-Hung Lo; G. Q. Chen

The usage of plastics in packaging and disposable products, and the generation of plastic waste, have been increasing drastically. Broader usage of biodegradable plastics in packaging and disposable products as a solution to environmental problems would heavily depend on further reduction of costs and the discovery of novel biodegradable plastics with improved properties. In the authors’ laboratories, various carbohydrates in the growth media, including sucrose, lactic acid, butyric acid, valeric acid, and various combinations of butyric and valeric acids, were utilized as the carbon (c) sources for the production of bioplastics byAlcaligenes eutrophus. As the first step in pursuit of eventual usage of industrial food wastewater as nutrients for microorganisms to synthesize bioplastics, the authors investigated the usage of malt wastes from a beer brewery plant as the C sources for the production of bioplastics by microorganisms. Specific polymer production yield by A. Latus DSM 1124 increased to 70% polymer/cell (g/g) and 32g/L cell dry wt, using malt wastes as the C source. The results of these experiments indicated that, with the use of different types of food wastes as the C source, different polyhydroxyal-kanoate copolymers could be produced with distinct polymer properties.

Collaboration


Dive into the Wai-Hung Lo's collaboration.

Top Co-Authors

Avatar

Hong Chua

Hong Kong Polytechnic University

View shared research outputs
Top Co-Authors

Avatar

P. H. F. Yu

Hong Kong Polytechnic University

View shared research outputs
Top Co-Authors

Avatar

Yun-Chung Leung

Hong Kong Polytechnic University

View shared research outputs
Top Co-Authors

Avatar

Tonni Agustiono Kurniawan

Hong Kong Polytechnic University

View shared research outputs
Top Co-Authors

Avatar

Peter Hoi-Fu Yu

Hong Kong Polytechnic University

View shared research outputs
Top Co-Authors

Avatar

H. Chua

Hong Kong Polytechnic University

View shared research outputs
Top Co-Authors

Avatar

Gilbert Y.S. Chan

Hong Kong Polytechnic University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kwok-Yin Wong

Hong Kong Polytechnic University

View shared research outputs
Top Co-Authors

Avatar

Pak-Ho Chan

Hong Kong Polytechnic University

View shared research outputs
Researchain Logo
Decentralizing Knowledge