Waldemar Serbiński
Gdańsk University of Technology
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Waldemar Serbiński.
Advances in Materials Sciences | 2010
Andrzej Zieliński; Sylwia Sobieszczyk; Tomasz Seramak; Waldemar Serbiński; B. Świeczko-Żurek; A. Ossowska
Biocompatibility and Bioactivity of Load-Bearing Metallic Implants The main objective of here presented research is to develop the titanium (Ti) alloy base composite materials possessing better biocompatibility, longer lifetime and bioactivity behaviour for load-bearing implants, e.g. hip joint and knee joint endoprosthesis. The development of such materials is performed through: modeling the material behaviour in biological environment in long time and developing of new procedures for such evaluation; obtaining of a Ti alloy with designed porosity; developing of an oxidation technology resulting in high corrosion resistance and bioactivity; developing of technologies for hydroxyapatite (HA) deposition aimed at composite bioactive coatings; developing of technologies of precipitation of the biodegradable core material placed within the pores. The examinations of degradation of Ti implants are carried out in order to recognize the sources of both early allergies and inflammation, and of long term degradation. The theoretical assessment of corrosion is made assuming three processes: electrochemical dissolution through imperfections of the anodic oxide layer, diffusion of metallic ions through the oxide layer, and dissolution of oxides themselves. In order to increase the biocompatibility, the toxic elements, aluminium (Al) and vanadium (V) are eliminated. The experiments have shown that titanium - zirconium - niobium (Ti-Zr-Nb) alloy may be a such a material which can also be prepared by both powder metallurgy (P/M) technique and selective laser melting. The porous (scaffold) Ti-Zr-Nb alloy is now obtained by powder metallurgy, classical and with space holders used before melting and decomposed, or remained during melting and removed by subsequent water dissolution. The oxidation of porous materials is performed either by electrochemical technique in special electrolytes or by chemical and/or hydrothermal method in order to obtain the optimal oxide layer well adjacent to an interface, preventing the base metal against corrosion and bioactive because of its nanotubular structure, permitting injection of some species into the pores. The Ca, O and N ion implantation or deposition of zirconia sublayers may be used to increase the biocompatibility, bioactivity and corrosion resistance. The HA coating obtained by either electrophoretic, biomimetic or by sol-gel deposition should result in gradient structure similar to bone structure, possessing high adhesion strength. The core material of the porous material should result in a biodegradable material, allowing slower dissolution followed by stepwise growth of bone tissue and angiogenesis, preventing local inflammation processes, sustaining the mechanical strength close to that of non-porous material.
Solid State Phenomena | 2011
Andrzej Zieliński; Sylwia Sobieszczyk; Waldemar Serbiński; Tomasz Seramak; A. Ossowska
The main objective of here presented research is a design the scaffold/porous titanium (Ti) alloy based composite material demonstrating better biocompatibility, longer lifetime and bioactivity behaviour for load-bearing implants. The development of such material is proposed by making a number of consecutive tasks. Modelling the mechanical, biomechanical and biological behavior of porous titanium structure and an elaboration of results is performed by mathematical methods, including FEM and fuzzy logic. The development of selected Ti-13Zr-Nb alloy with designed porosity and no harmful effects is made by powder metallurgy (PM) with and without space holders, and by rapid prototyping with an use of selective laser melting (SLM). The development of an oxidation technology resulting in high corrosion resistance and bioactivity is carried out by electrochemical oxidation, gaseous oxidation and chemical oxidation, and their combination. The HA depositon is made by electrochemical and chemical (alternate immersion) methods. The core material is designed as a combination of natural polymer and bioceramics in order to allow slow dissolution followed by stepwise growth of bone tissue and angiogenesis, preventing local inflammation processes, and sustaining the mechanical strength close to that of non-porous material.
Solid State Phenomena | 2011
A. Zieliński; M. Jażdżewska; J. Łubiński; Waldemar Serbiński
The titanium and its alloys can be subjected to surface treatment, including laser treatment. In this work a new laser treatment at cryogenic conditions of Ti6Al4V alloy has been described. The work has been aimed at establishing whether such surface treatment could be suitable for implants working under wear in biological corrosive environment. The remelting has been made with the use of CO2 continuous work laser at laser power between 3 and 6 kW, at scan rate 0.5 and 1 m/s. The microstructure, surface topography, hardness, microhardness and wear linear rate and mass loss under tribological tests made in Ringer`s solution have been made. The results have shown that despite the surface cracking the tribological properties in simulated body fluid have been substantially improved.
Advances in Materials Sciences | 2009
A. Zieliński; Waldemar Serbiński; B. Majkowska; M. Jażdżewska; I. Skalski
Influence of laser remelting at cryogenic conditions on corrosion resistance of non-ferrous alloys The main reason for laser remelting of the components made of aluminium, copper and titanium alloys is to obtain high hardness and corrosion resistance at the surface for longer lifetime as result of the rapid solidification. The final microstructure, phase composition and properties of aluminium, copper and titanium alloys depend on the laser process parameters and obviously on the nature of the equilibrium system. The effect of laser surface remelting at cryogenic conditions on the microstructure and corrosion characteristics of the AlSi13Mg1CuNi, SUPERSTON and Ti-6Al-4V alloys are presented. The beneficial effects of laser treatment on the microstructure and corrosion behaviour of those alloys used for different products are observed.
Advances in Materials Sciences | 2008
B. Majkowska; Waldemar Serbiński; I. Skalski
Assessment of Cavitation Erosion Damage of Laser Remelted the Superston Alloy Influence of laser treatment at cryogenic conditions on surface microstructure after cavitation test of the SUPERSTON alloy are presented in this paper. The cavitation test was performed using the rotating disc facility in IPM PAN Gdansk. The kinetics of mass loss during the cavitation process was determined for casting and laser remelted specimens. Surface and cross-section microstructure of the SUPERSTON alloy after laser treatment and cavitation test was observed by optical and scanning electron microscope.
Solid State Phenomena | 2011
Tomasz Seramak; Waldemar Serbiński; Andrzej Zieliński
Research on improvement of structure and fabrication methods of the bone implants are carried out for many years. Research are aimed to shape the structures, that will have a Youngs modulus value similar to the value of the human bones Youngs modulus. Depending on the porosity, Young’s moduli can even be tailored to match the modulus of bone closer than solid metals can, thus reducing the problems associated with stress shielding of a human bones. The designed structure should also be characterized by a high abrasion and corrosion resistance to and allow bone ingrowth in the implant material to make the best bone-implant fixation. For this purpose, implants should have a porous structure with an appropriate pore size and with open-cell porosity. Material for bone implants must also have a high biocompatibility and bioactivity. Following these requirements, the metallic porous materials appear to be the most suitable material for bone implants. In this paper a various methods of a porous materials fabrication for bone implants are listed. It was shown that titanium and its alloys (e.g. Ti6Al4V or Ti13Nb13Zr) are widely used as biomaterials for implants. Research in order to increase their wear and corrosion resistance and to improve their biocompatibility and bioactivity are still carried out. One of the most effective methods of manufacturing the porous materials is a powder metallurgy (PM). In this paper the results of research under shaping the structure of the porous titanium alloy Ti13Nb13Zr are also presented. As a manufacturing method of the porous material from the investigated and mentioned above Ti alloy, the powder metallurgy (PM) was choosen - with and without the use of a space holders. Method of fabrication a spherical powder from the aforementioned Ti alloy and results of its morphology research are discussed. The applied powder compaction method (with use and without use of space holders) and the influence of a sintering process on the final microstructure morphology of porous material obtained from Ti13Nb13Zr alloy are also presented and discussed.
Solid State Phenomena | 2011
Waldemar Serbiński; Tadeusz Wierzchoń
Aluminium alloys are the materials of choice when high-strenght-to-weight rations are required in structural components, and used widely in the automotive and aerospace industries. As an example, the use of an aluminium components in the automobile industry has greatly increased due to weight savings and resultant fuel economy improvements. There are many methods of surface consolidation of an aluminium alloys. This work presents the hybrid creation method of the newly layers type (Mn-P) on the AlSi13Mg1CuNi alloy, its microstructure, hardness, chemical and phase compositions as well as wear and corrosion resistance. Growth the wear resistance of an aluminium alloy coated with the layer type (Mn-P) is visable. The corrosion characteristics of these layers are also considered.
Advances in Materials Sciences | 2011
Tomasz Seramak; Waldemar Serbiński; Andrzej Zieliński
POROUS BIOMATERIAL FOR ORTHOPAEDIC IMPLANTS BASED ON TITANIUM ALLOY Titanium and its alloys are widely used as biomaterials for orthopaedic applications. Research connected with their best corrosion and wear resistance, biocompatibility and bioactivity are still being conducted. The current research is also focused on the design and manufacturing of the porous materials based on e.g. Ti-13Nb-13Zr alloy, which can be applied for implants. One of the most effective manufacturing methods of the porous materials are powder metallurgy techniques. The aim of the presented work was the design of powder preparation procedure and design a parameters of pressing and sintering processes in order to obtain the porous structure from Ti-13Nb-13Zr alloy. Investigation results of the microstructure morphology, pore size and porosity of the obtained porous material on the base Ti-13Nb-13Zr alloy in dependence of the pressing and sintering parameters are also shown and discussed.
Advances in Materials Sciences | 2008
A. Zieliński; A. Dziadoń; Waldemar Serbiński; M. Jażdżewska
Surface Cracking of Laser Melted Ti-6Al-4V Alloy The characteristic features of surface cracking observed after laser melting with CO2 and Nd:YAG laser were described. The cracks were always present, their length approaching some part of melted zone and scarcely dependent on laser melting conditions. The appearance of cracks was attributed mainly to martensitic transformation within the surface layer. The possible contribution of developed thermal stresses cannot be also excluded. The existence of cracks may be utilized for the enhancement of bone - implant strength.
Advances in Materials Sciences | 2017
A. Szoka; G. Gajowiec; Andrzej Zieliński; Waldemar Serbiński; Jean-Marc Olive; A. Ossowska
Abstract The presence of the oxide layers on Zr alloys may retard or enhance the hydrogen entry and material degradation, depending on the layer features. This research has been aimed to determine the effects of pre-oxidation of the Zircaloy-2 alloy at a different temperature on hydrogen degradation. The specimens were oxidised in laboratory air at 350°C, 700°C, and 900°C. After, some samples were tensed at 10-5 strain rate and simultaneously charged with hydrogen under constant direct voltage in 1 N sulfuric acid at room temperature. Other specimens were charged without any tension, then annealed at 400°C for 4 h and finally tensed at above strain rate. The SEM examinations were performed on the cross-sections and fracture faces of specimens. The obtained results demonstrate the effects of the oxide layer on the cathodic current and hydrogen entry, mechanical properties and the appearance of hydrides and fracture behaviour.