Tomasz Seramak
Gdańsk University of Technology
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Tomasz Seramak.
Advances in Materials Sciences | 2010
Andrzej Zieliński; Sylwia Sobieszczyk; Tomasz Seramak; Waldemar Serbiński; B. Świeczko-Żurek; A. Ossowska
Biocompatibility and Bioactivity of Load-Bearing Metallic Implants The main objective of here presented research is to develop the titanium (Ti) alloy base composite materials possessing better biocompatibility, longer lifetime and bioactivity behaviour for load-bearing implants, e.g. hip joint and knee joint endoprosthesis. The development of such materials is performed through: modeling the material behaviour in biological environment in long time and developing of new procedures for such evaluation; obtaining of a Ti alloy with designed porosity; developing of an oxidation technology resulting in high corrosion resistance and bioactivity; developing of technologies for hydroxyapatite (HA) deposition aimed at composite bioactive coatings; developing of technologies of precipitation of the biodegradable core material placed within the pores. The examinations of degradation of Ti implants are carried out in order to recognize the sources of both early allergies and inflammation, and of long term degradation. The theoretical assessment of corrosion is made assuming three processes: electrochemical dissolution through imperfections of the anodic oxide layer, diffusion of metallic ions through the oxide layer, and dissolution of oxides themselves. In order to increase the biocompatibility, the toxic elements, aluminium (Al) and vanadium (V) are eliminated. The experiments have shown that titanium - zirconium - niobium (Ti-Zr-Nb) alloy may be a such a material which can also be prepared by both powder metallurgy (P/M) technique and selective laser melting. The porous (scaffold) Ti-Zr-Nb alloy is now obtained by powder metallurgy, classical and with space holders used before melting and decomposed, or remained during melting and removed by subsequent water dissolution. The oxidation of porous materials is performed either by electrochemical technique in special electrolytes or by chemical and/or hydrothermal method in order to obtain the optimal oxide layer well adjacent to an interface, preventing the base metal against corrosion and bioactive because of its nanotubular structure, permitting injection of some species into the pores. The Ca, O and N ion implantation or deposition of zirconia sublayers may be used to increase the biocompatibility, bioactivity and corrosion resistance. The HA coating obtained by either electrophoretic, biomimetic or by sol-gel deposition should result in gradient structure similar to bone structure, possessing high adhesion strength. The core material of the porous material should result in a biodegradable material, allowing slower dissolution followed by stepwise growth of bone tissue and angiogenesis, preventing local inflammation processes, sustaining the mechanical strength close to that of non-porous material.
Solid State Phenomena | 2011
Andrzej Zieliński; Sylwia Sobieszczyk; Waldemar Serbiński; Tomasz Seramak; A. Ossowska
The main objective of here presented research is a design the scaffold/porous titanium (Ti) alloy based composite material demonstrating better biocompatibility, longer lifetime and bioactivity behaviour for load-bearing implants. The development of such material is proposed by making a number of consecutive tasks. Modelling the mechanical, biomechanical and biological behavior of porous titanium structure and an elaboration of results is performed by mathematical methods, including FEM and fuzzy logic. The development of selected Ti-13Zr-Nb alloy with designed porosity and no harmful effects is made by powder metallurgy (PM) with and without space holders, and by rapid prototyping with an use of selective laser melting (SLM). The development of an oxidation technology resulting in high corrosion resistance and bioactivity is carried out by electrochemical oxidation, gaseous oxidation and chemical oxidation, and their combination. The HA depositon is made by electrochemical and chemical (alternate immersion) methods. The core material is designed as a combination of natural polymer and bioceramics in order to allow slow dissolution followed by stepwise growth of bone tissue and angiogenesis, preventing local inflammation processes, and sustaining the mechanical strength close to that of non-porous material.
Advances in Materials Sciences | 2014
Katarzyna Zasińska; Tomasz Seramak; Jacek Łubiński
Abstract The key requirement for the modern endoprosthesis is high durability of the friction components, which results in long and trouble-free operation in the human body. The durability of currently used endoprosthesis is often limited by tribological wear processes of friction components (e.g. between the head and the acetabular component in a hip joint endoprosthesis) [8, 19, 23, 24]. In order to compare the tribological wear, tribological tests were carried out by means of tribometer on friction pairs of the following composition: implantation steel 316 LVM/PE-UHMW and titanium alloy Ti13Nb13Zr/PE-UHMW. Determining of the friction coefficient, measured profiles of surface roughness and microscopic observation allowed to evaluate the abrasive wear of the tested biomaterials.
Acta of Bioengineering and Biomechanics | 2017
Bartłomiej Trybuś; Andrzej Zieliński; Rene Beutner; Tomasz Seramak; Dieter Scharnweber
PURPOSE Existing knowledge about the appearance, thickness, and chemical composition of phosphate coatings on titanium inside porous structures is insufficient. Such knowledge is important for the design and fabrication of porous implants. METHODS Metallic scaffolds were fabricated by selective laser melting of 316L stainless steel powder. Phosphate coatings were deposited on Ti sensors placed either outside the scaffolds or in the holes in the scaffolds. The electrochemically-assisted cathodic deposition of phosphate coatings was performed under galvanostatic conditions in an electrolyte containing the calcium and phosphate ions. The phosphate deposits were microscopically investigated; this included the performance of mass weight measurements and chemical analyses of the content of Ca2+ and 24 PO ions after the dissolution of deposits. RESULTS The thicknesses of the calcium phosphate coatings were about 140 and 200 nm for isolated titanium sensors and 170 and 300 nm for titanium sensors placed inside pores. Deposition of calcium phosphate occurred inside the pores up to 150 mm below the scaffold surface. The deposits were rich in Ca, with a Ca/P ratio ranging from 2 to 2.5. CONCLUSIONS Calcium phosphate coatings can be successfully deposited on a Ti surface inside a model scaffold. An increase in cathodic current results in an increase in coating thickness. Any decrease in the cathodic current inside the porous structure is slight. The calcium phosphate inside the pores has a much higher Ca/P ratio than that of stoichiometric HAp, likely due to a gradual increase in Ca fraction with distance from the surface.
Solid State Phenomena | 2011
Tomasz Seramak; Waldemar Serbiński; Andrzej Zieliński
Research on improvement of structure and fabrication methods of the bone implants are carried out for many years. Research are aimed to shape the structures, that will have a Youngs modulus value similar to the value of the human bones Youngs modulus. Depending on the porosity, Young’s moduli can even be tailored to match the modulus of bone closer than solid metals can, thus reducing the problems associated with stress shielding of a human bones. The designed structure should also be characterized by a high abrasion and corrosion resistance to and allow bone ingrowth in the implant material to make the best bone-implant fixation. For this purpose, implants should have a porous structure with an appropriate pore size and with open-cell porosity. Material for bone implants must also have a high biocompatibility and bioactivity. Following these requirements, the metallic porous materials appear to be the most suitable material for bone implants. In this paper a various methods of a porous materials fabrication for bone implants are listed. It was shown that titanium and its alloys (e.g. Ti6Al4V or Ti13Nb13Zr) are widely used as biomaterials for implants. Research in order to increase their wear and corrosion resistance and to improve their biocompatibility and bioactivity are still carried out. One of the most effective methods of manufacturing the porous materials is a powder metallurgy (PM). In this paper the results of research under shaping the structure of the porous titanium alloy Ti13Nb13Zr are also presented. As a manufacturing method of the porous material from the investigated and mentioned above Ti alloy, the powder metallurgy (PM) was choosen - with and without the use of a space holders. Method of fabrication a spherical powder from the aforementioned Ti alloy and results of its morphology research are discussed. The applied powder compaction method (with use and without use of space holders) and the influence of a sintering process on the final microstructure morphology of porous material obtained from Ti13Nb13Zr alloy are also presented and discussed.
Advances in Materials Sciences | 2011
Tomasz Seramak; Waldemar Serbiński; Andrzej Zieliński
POROUS BIOMATERIAL FOR ORTHOPAEDIC IMPLANTS BASED ON TITANIUM ALLOY Titanium and its alloys are widely used as biomaterials for orthopaedic applications. Research connected with their best corrosion and wear resistance, biocompatibility and bioactivity are still being conducted. The current research is also focused on the design and manufacturing of the porous materials based on e.g. Ti-13Nb-13Zr alloy, which can be applied for implants. One of the most effective manufacturing methods of the porous materials are powder metallurgy techniques. The aim of the presented work was the design of powder preparation procedure and design a parameters of pressing and sintering processes in order to obtain the porous structure from Ti-13Nb-13Zr alloy. Investigation results of the microstructure morphology, pore size and porosity of the obtained porous material on the base Ti-13Nb-13Zr alloy in dependence of the pressing and sintering parameters are also shown and discussed.
TRIBOLOGIA | 2018
Katarzyna Zasińska; Tomasz Seramak; Jacek Łubiński; Grzegorz Rotta
Metal – polymer sliding contacts are a typical combination in industry and medicine. For decades such a set of materials has been the primary choice in human joints endoprosthetic technology. In this paper tribological issues of are presented from a research on the potential for practical use of Ti-13Nb-13Zr/UHMW-PE couple for orthopedic endoprosthesis. In tests on simplified models it is critically important to carefully select geometry of contact, load and velocity magnitudes and profiles to the later interpretation of results. In case of organic polymers interacting with metallic components the problem is even more prominent, than in the case of all metal systems because of great differences in the modulus of elasticity between the specimens in contact. High local loading can cause excessive heat generation and accelerated loss in polymer’s strength induced by thermal plastification. The process may not be manifested in the course of the experiment in any way detectable and might compromise the accuracy of wear measurement. In the case of the presented research an analysis has been performed to evaluate the observed wear profile of UHMW-PE with respect to non-uniform distribution of contact stress. A simulation was run with the use of FEM to evaluate the contact conditions between the titanium alloy and UHMW-PE specimens and the results were confronted with the wear profiles. Interesting similarities were discovered yielding useful information on the fundamentals of the wear in and for future research on similar systems.
Advances in Materials Sciences | 2017
Tomasz Seramak; Katarzyna Zasińska; Andrzej Zieliński; J. Andryskowski; A. Andryskowska-Ignaczak; M. Motyl
Abstract The fabrication of the prosthetic foundations and bridges from the Ti-13Zr-13Nb alloy is described. The process was started from CAD/CAM design of 3D models of the foundations based on scanning of patient’s mouth. Next, 3D models were transformed into *.stl files for the manufacturing stage and then the manufacturing process by means of the selective laser melting with the SLM Realizer 100 equipment was made. The intrinsic structure of the obtained parts was investigated with X-ray microtomography. The observed imperfections in the foundations internal structure can be eliminated by a proper setting of the laser melting process. The thermal stresses, which resulted of the temperature change during melting and caused the bending of titanium made bridges, were eliminated at a design stage.
Advances in Materials Sciences | 2015
Grzegorz Rotta; Tomasz Seramak; Katarzyna Zasińska
Abstract Porous structures made of metal or biopolymers with a structure similar in shape and mechanical properties to human bone can easily be produced by stereolithographic techniques, e.g. selective laser melting (SLM). Numerical methods, like Finite Element Method (FEM) have great potential in testing new scaffold designs, according to their mechanical properties before manufacturing, i.e. strength or stiffness. An example of such designs are scaffolds used in biomedical applications, like in orthopedics’ and mechanical properties of these structures should meet specific requirements. This paper shows how mechanical properties of proposed scaffolds can be estimated with regard to total porosity and pore shape.
World Journal of Reaearch and Review | 2017
Tomasz Seramak; Katarzyna Zasińska; Andrzej Zieliński; Michał Gubański