Waleska Kerllen Martins
University of São Paulo
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Waleska Kerllen Martins.
PLOS ONE | 2014
Orlando Chiarelli-Neto; Alan Silva Ferreira; Waleska Kerllen Martins; Christiane Pavani; Divinomar Severino; Fernanda Faião-Flores; Silvya Stuchi Maria-Engler; Eduardo Aliprandini; Glaucia R. Martinez; Paolo Di Mascio; Marisa H. G. Medeiros; Mauricio S. Baptista
Protecting human skin from sun exposure is a complex issue that involves unclear aspects of the interaction between light and tissue. A persistent misconception is that visible light is safe for the skin, although several lines of evidence suggest otherwise. Here, we show that visible light can damage melanocytes through melanin photosensitization and singlet oxygen (1O2) generation, thus decreasing cell viability, increasing membrane permeability, and causing both DNA photo-oxidation and necro-apoptotic cell death. UVA (355 nm) and visible (532 nm) light photosensitize 1O2 with similar yields, and pheomelanin is more efficient than eumelanin at generating 1O2 and resisting photobleaching. Although melanin can protect against the cellular damage induced by UVB, exposure to visible light leads to pre-mutagenic DNA lesions (i.e., Fpg- and Endo III-sensitive modifications); these DNA lesions may be mutagenic and may cause photoaging, as well as other health problems, such as skin cancer.
Cancer Research | 2005
Luciana I. Gomes; Gustavo H. Esteves; Alex Franco de Carvalho; Elier B. Cristo; Roberto Hirata; Waleska Kerllen Martins; Sarah Martins Marques; Luiz P. Camargo; Helena Brentani; Adriane Pelosof; Claudia Zitron; Rubens Sallum; André Luis Montagnini; Fernando Augusto Soares; E. Jordão Neves; Luiz F.L. Reis
Adenocarcinomas of stomach and esophagus are frequently associated with preceding inflammatory alterations of the normal mucosa. Whereas intestinal metaplasia of the gastric mucosa is associated with higher risk of malignization, Barretts disease is a risk factor for adenocarcinoma of the esophagus. Barretts disease is characterized by the substitution of the squamous mucosa of the esophagus by a columnar tissue classified histopathologically as intestinal metaplasia. Using cDNA microarrays, we determined the expression profile of normal gastric and esophageal mucosa as well as intestinal metaplasia and adenocarcinomas from both organs. Data were explored to define functional alterations related to the transformation from squamous to columnar epithelium and the malignant transformation from intestinal metaplasia to adenocarcinomas. Based on their expression profile, adenocarcinomas of the esophagus showed stronger correlation with intestinal metaplasia of the stomach than with Barretts mucosa. Second, we identified two functional modules, lipid metabolism and cytokine, as being altered with higher statistical significance. Whereas the lipid metabolism module is active in samples representing intestinal metaplasia and inactive in adenocarcinomas, the cytokine module is inactive in samples representing normal esophagus and esophagitis. Using the concept of relevance networks, we determined the changes in linear correlation of genes pertaining to these two functional modules. Exploitation of the data presented herein will help in the precise molecular characterization of adenocarcinoma from the distal esophagus, avoiding the topographical and descriptive classification that is currently adopted, and help with the proper management of patients with Barretts disease.
Biotechnology Journal | 2013
Waleska Kerllen Martins; Divinomar Severino; Cleidiane Souza; Beatriz S. Stolf; Mauricio S. Baptista
Recent progress in understanding the molecular basis of autophagy has demonstrated its importance in several areas of human health. Affordable screening techniques with higher sensitivity and specificity to identify autophagy are, however, needed to move the field forward. In fact, only laborious and/or expensive methodologies such as electron microscopy, dye‐staining of autophagic vesicles, and LC3‐II immunoblotting or immunoassaying are available for autophagy identification. Aiming to fulfill this technical gap, we describe here the association of three widely used assays to determine cell viability – Crystal Violet staining (CVS), 3‐[4, 5‐dimethylthiaolyl]‐2, 5‐diphenyl‐tetrazolium bromide (MTT) reduction, and neutral red uptake (NRU) – to predict autophagic cell death in vitro. The conceptual framework of the method is the superior uptake of NR in cells engaging in autophagy. NRU was then weighted by the average of MTT reduction and CVS allowing the calculation of autophagic arbitrary units (AAU), a numeric variable that correlated specifically with the autophagic cell death. The proposed strategy is very useful for drug discovery, allowing the investigation of potential autophagic inductor agents through a rapid screening using mammalian cell lines B16‐F10, HaCaT, HeLa, MES‐SA, and MES‐SA/Dx5 in a unique single microplate.
BMC Medical Genomics | 2011
Waleska Kerllen Martins; Gustavo H. Esteves; Otávio Machado de Almeida; Gisele Gargantini Rezze; Gilles Landman; Sarah Martins Marques; Alex F. Carvalho; Luiz F. L. Reis; João Pedreira Duprat; Beatriz S. Stolf
BackgroundA wide variety of high-throughput microarray platforms have been used to identify molecular targets associated with biological and clinical tumor phenotypes by comparing samples representing distinct pathological states.MethodsThe gene expression profiles of human cutaneous melanomas were determined by cDNA microarray analysis. Next, a robust analysis to determine functional classifications and make predictions based on data-oriented hypotheses was performed. Relevant networks that may be implicated in melanoma progression were also considered.ResultsIn this study we aimed to analyze coordinated gene expression changes to find molecular pathways involved in melanoma progression. To achieve this goal, ontologically-linked modules with coordinated expression changes in melanoma samples were identified. With this approach, we detected several gene networks related to different modules that were induced or repressed during melanoma progression. Among them we observed high coordinated expression levels of genes involved in a) cell communication (KRT4, VWF and COMP); b) epidermal development (KLK7, LAMA3 and EVPL); and c) functionally related to kallikreins (EVPL, KLK6, KLK7, KLK8, SERPINB13, SERPING1 and SLPI). Our data also indicated that hKLK7 protein expression was significantly associated with good prognosis and survival.ConclusionsOur findings, derived from a different type of analysis of microarray data, highlight the importance of analyzing coordinated gene expression to find molecular pathways involved in melanoma progression.
PLOS ONE | 2013
Maria Carolina Luque; Paulo Sampaio Gutierrez; Victor Debbas; Waleska Kerllen Martins; Pedro Puech-Leão; Georgia Porto; Verônica Coelho; Laurence Boumsell; Jorge Kalil; Beatriz S. Stolf
Atherosclerosis is a complex disease in which vessels develop plaques comprising dysfunctional endothelium, monocyte derived lipid laden foam cells and activated lymphocytes. Considering that humans and animal models of the disease develop quite distinct plaques, we used human plaques to search for proteins that could be used as markers of human atheromas. Phage display peptide libraries were probed to fresh human carotid plaques, and a bound phage homologous to plexin B1, a high affinity receptor for CD100, was identified. CD100 is a member of the semaphorin family expressed by most hematopoietic cells and particularly by activated T cells. CD100 expression was analyzed in human plaques and normal samples. CD100 mRNA and protein were analyzed in cultured monocytes, macrophages and foam cells. The effects of CD100 in oxLDL-induced foam cell formation and in CD36 mRNA abundance were evaluated. Human atherosclerotic plaques showed strong labeling of CD100/SEMA4D. CD100 expression was further demonstrated in peripheral blood monocytes and in in vitro differentiated macrophages and foam cells, with diminished CD100 transcript along the differentiation of these cells. Incubation of macrophages with CD100 led to a reduction in oxLDL-induced foam cell formation probably through a decrease of CD36 expression, suggesting for the first time an atheroprotective role for CD100 in the human disease. Given its differential expression in the numerous foam cells and macrophages of the plaques and its capacity to decrease oxLDL engulfment by macrophages we propose that CD100 may have a role in atherosclerotic plaque development, and may possibly be employed in targeted treatments of these atheromas.
Scientific Reports | 2017
Tayana Mazin Tsubone; Waleska Kerllen Martins; Christiane Pavani; Helena C. Junqueira; Rosangela Itri; Mauricio S. Baptista
Mobilization of specific mechanisms of regulated cell death is a promising alternative to treat challenging illness such as neurodegenerative disease and cancer. The use of light to activate these mechanisms may provide a route for target-specific therapies. Two asymmetric porphyrins with opposite charges, the negatively charged TPPS2a and the positively charged CisDiMPyP were compared in terms of their properties in membrane mimics and in cells. CisDiMPyP interacts to a larger extent with model membranes and with cells than TPPS2a, due to a favorable electrostatic interaction. CisDiMPyP is also more effective than TPPS2a in damaging membranes. Surprisingly, TPPS2a is more efficient in causing photoinduced cell death. The lethal concentration on cell viability of 50% (LC50) found for TPPS2a was ~3.5 (raw data) and ~5 (considering photosensitizer incorporation) times smaller than for CisDiMPyP. CisDiMPyP damaged mainly mitochondria and triggered short-term phototoxicity by necro-apoptotic cell death. Photoexcitation of TPPS2a promotes mainly lysosomal damage leading to autophagy-associated cell death. Our data shows that an exact damage in lysosome is more effective to diminish proliferation of HeLa cells than a similar damage in mitochondria. Precisely targeting organelles and specifically triggering regulated cell death mechanisms shall help in the development of new organelle-target therapies.
Biochimica et Biophysica Acta | 2017
Waleska Kerllen Martins; Andreza B. Gomide; Erico T. Costa; Helena C. Junqueira; Beatriz S. Stolf; Rosangela Itri; Mauricio S. Baptista
BACKGROUNDnCell senescence is a process of central importance to the understanding of aging as well as to the development of new drugs. It is related with genomic instability, which has been shown to occur in the presence of autophagy deficiency. Yet, the mechanism that triggers genomic instability and senescence from a condition of autophagy deficiency remains unknown. By analyzing the consequences of treating human keratinocytes (HaCaT) with the pentacyclic triterpenoid Betulinic Acid (BA) we were able to propose that cell senescence can develop as a response to parallel damage in the membranes of mitochondria and lysosome.nnnMETHODSnWe performed biochemical, immunocytochemical and cytometric assays after challenging HaCaT cells with BA. We also evaluated membrane leakage induced by BA in liposomes and giant unilamellar vesicles.nnnRESULTSnBy destabilizing lipid bilayers of mitochondria and lysosomes, BA triggers the misbalance in the mitochondrial-lysosomal axis leading to perceived autophagy impairment, lipofuscinogenesis, genomic instability and cell senescence. The progressive accumulation of mitochondria and lipofuscin, which comes from imperfect mitophagy triggered by BA, provides a continuous source of reactive species further damaging lysosomes and leading to cell aging.nnnCONCLUSIONSnThis work reveals that the initial trigger of cell senescence can be the physical damage in the membranes of lysosomes and mitochondria.nnnGENERAL SIGNIFICANCEnThis concept will help in the search of new drugs that act as senescence-inductors. BA is under evaluation as chemotherapeutic agent against several types of tumors and induction of cell senescence should be considered as one of its main mechanisms of action.
Autophagy | 2018
Waleska Kerllen Martins; Nayra Fernandes Santos; Cleidiane S. Rocha; Isabel O. L. Bacellar; Tayana Mazin Tsubone; Ana Cláudia Viotto; Adriana Y. Matsukuma; Aline B. de P. Abrantes; Paulo Siani; Luís G. Dias; Mauricio S. Baptista
ABSTRACT Cells challenged by photosensitized oxidations face strong redox stresses and rely on autophagy to either survive or die. However, the use of macroautophagy/autophagy to improve the efficiency of photosensitizers, in terms of inducing cell death, remains unexplored. Here, we addressed the concept that a parallel damage in the membranes of mitochondria and lysosomes leads to a scenario of autophagy malfunction that can greatly improve the efficiency of the photosensitizer to cause cell death. Specific damage to these organelles was induced by irradiation of cells pretreated with 2 phenothiazinium salts, methylene blue (MB) and 1,9-dimethyl methylene blue (DMMB). At a low concentration level (10 nM), only DMMB could induce mitochondrial damage, leading to mitophagy activation, which did not progress to completion because of the parallel damage in lysosome, triggering cell death. MB-induced photodamage was perceived almost instantaneously after irradiation, in response to a massive and nonspecific oxidative stress at a higher concentration range (2 µM). We showed that the parallel damage in mitochondria and lysosomes activates and inhibits mitophagy, leading to a late and more efficient cell death, offering significant advantage (2 orders of magnitude) over photosensitizers that cause unspecific oxidative stress. We are confident that this concept can be used to develop better light-activated drugs. Abbreviations: ΔΨm: mitochondrial transmembrane inner potential; AAU: autophagy arbitrary units; ATG5, autophagy related 5; ATG7: autophagy related 7; BAF: bafilomycin A1; BSA: bovine serum albumin; CASP3: caspase 3; CF: carboxyfluorescein; CTSB: cathepsin B; CVS: crystal violet staining; DCF: dichlorofluorescein; DCFH2: 2ʹ,7ʹ-dichlorodihydrofluorescein; DMMB: 1,9-dimethyl methylene blue; ER: endoplasmic reticulum; HaCaT: non-malignant immortal keratinocyte cell line from adult human skin; HP: hydrogen peroxide; LC3B-II: microtubule associated protein 1 light chain 3 beta-II; LMP: lysosomal membrane permeabilization; LTG: LysoTracker™ Green DND-26; LTR: LysoTracker™ Red DND-99; 3-MA: 3-methyladenine; MB: methylene blue; mtDNA: mitochondrial DNA; MitoSOX™: red mitochondrial superoxide probe; MTDR: MitoTracker™ Deep Red FM; MTO: MitoTracker™ Orange CMTMRos; MT-ND1: mitochondrially encoded NADH:ubiquinone oxidoreductase core subunit 1; MTT: methylthiazolyldiphenyl-tetrazolium bromide; 1O2: singlet oxygen; OH. hydroxil radical; PRKN/parkin: parkin RBR E3 ubiquitin protein ligase; PBS: phosphate-buffered saline; PI: propidium iodide; PDT: photodynamic therapy; PS: photosensitizer; QPCR: gene-specific quantitative PCR-based; Rh123: rhodamine 123; ROS: reactive oxygen species RTN: rotenone; SQSTM1/p62: sequestosome 1; SUVs: small unilamellar vesicles; TBS: Tris-buffered saline
Photochemical and Photobiological Sciences | 2016
Daniela Taysa Rodrigues; Ana Cláudia Viotto; Robert Checchia; Andreza B. Gomide; Divinomar Severino; Rosangela Itri; Mauricio S. Baptista; Waleska Kerllen Martins
Journal of Investigative Dermatology | 2017
Paulo Newton Tonolli; Orlando Chiarelli-Neto; Carolina Santacruz-Perez; Helena C. Junqueira; Ii-Sei Watanabe; Felipe Gustavo Ravagnani; Waleska Kerllen Martins; Mauricio S. Baptista