Walt F. Lima
Isis Pharmaceuticals
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Walt F. Lima.
Cell | 2012
Dongbo Yu; Hannah Pendergraff; Jing Liu; Holly Kordasiewicz; Don W. Cleveland; Eric E. Swayze; Walt F. Lima; Stanley T. Crooke; Thazha P. Prakash; David R. Corey
Mutant huntingtin (HTT) protein causes Huntington disease (HD), an incurable neurological disorder. Silencing mutant HTT using nucleic acids would eliminate the root cause of HD. Developing nucleic acid drugs is challenging, and an ideal clinical approach to gene silencing would combine the simplicity of single-stranded antisense oligonucleotides with the efficiency of RNAi. Here, we describe RNAi by single-stranded siRNAs (ss-siRNAs). ss-siRNAs are potent (>100-fold more than unmodified RNA) and allele-selective (>30-fold) inhibitors of mutant HTT expression in cells derived from HD patients. Strategic placement of mismatched bases mimics micro-RNA recognition and optimizes discrimination between mutant and wild-type alleles. ss-siRNAs require Argonaute protein and function through the RNAi pathway. Intraventricular infusion of ss-siRNA produced selective silencing of the mutant HTT allele throughout the brain in a mouse HD model. These data demonstrate that chemically modified ss-siRNAs function through the RNAi pathway and provide allele-selective compounds for clinical development.
Nucleic Acids Research | 2014
Thazha P. Prakash; Mark J. Graham; Jinghua Yu; Rick Carty; Audrey Low; Alfred Chappell; Karsten Schmidt; Chenguang Zhao; Mariam Aghajan; Heather F. Murray; Stan Riney; Sheri L. Booten; Susan F. Murray; Hans Gaus; Jeff Crosby; Walt F. Lima; Shuling Guo; Brett P. Monia; Eric E. Swayze; Punit P. Seth
Triantennary N-acetyl galactosamine (GalNAc, GN3), a high-affinity ligand for the hepatocyte-specific asialoglycoprotein receptor (ASGPR), enhances the potency of second-generation gapmer antisense oligonucleotides (ASOs) 6–10-fold in mouse liver. When combined with next-generation ASO designs comprised of short S-cEt (S-2′-O-Et-2′,4′-bridged nucleic acid) gapmer ASOs, ∼60-fold enhancement in potency relative to the parent MOE (2′-O-methoxyethyl RNA) ASO was observed. GN3-conjugated ASOs showed high affinity for mouse ASGPR, which results in enhanced ASO delivery to hepatocytes versus non-parenchymal cells. After internalization into cells, the GN3-ASO conjugate is metabolized to liberate the parent ASO in the liver. No metabolism of the GN3-ASO conjugate was detected in plasma suggesting that GN3 acts as a hepatocyte targeting prodrug that is detached from the ASO by metabolism after internalization into the liver. GalNAc conjugation also enhanced potency and duration of the effect of two ASOs targeting human apolipoprotein C-III and human transthyretin (TTR) in transgenic mice. The unconjugated ASOs are currently in late stage clinical trials for the treatment of familial chylomicronemia and TTR-mediated polyneuropathy. The ability to translate these observations in humans offers the potential to improve therapeutic index, reduce cost of therapy and support a monthly dosing schedule for therapeutic suppression of gene expression in the liver using ASOs.
Journal of Biological Chemistry | 1999
Hongjiang Wu; Walt F. Lima; Stanley T. Crooke
We have characterized cloned His-tag human RNase H1. The activity of the enzyme exhibited a bell-shaped response to divalent cations and pH. The optimum conditions for catalysis consisted of 1 mm Mg2+ and pH 7–8. In the presence of Mg2+, Mn2+ was inhibitory. Human RNase H1 shares many enzymatic properties with Escherichia coliRNase H1. The human enzyme cleaves RNA in a DNA-RNA duplex resulting in products with 5′-phosphate and 3′-hydroxy termini, can cleave overhanging single strand RNA adjacent to a DNA-RNA duplex, and is unable to cleave substrates in which either the RNA or DNA strand has 2′ modifications at the cleavage site. Human RNase H1 binds selectively to “A-form”-type duplexes with approximately 10–20-fold greater affinity than that observed for E. coli RNase H1. The human enzyme displays a greater initial rate of cleavage of a heteroduplex-containing RNA-phosphorothioate DNA than an RNA-DNA duplex. Unlike the E. coli enzyme, human RNase H1 displays a strong positional preference for cleavage, i.e. it cleaves between 8 and 12 nucleotides from the 5′-RNA-3′-DNA terminus of the duplex. Within the preferred cleavage site, the enzyme displays modest sequence preference with GU being a preferred dinucleotide. The enzyme is inhibited by single-strand phosphorothioate oligonucleotides and displays no evidence of processivity. The minimum RNA-DNA duplex length that supports cleavage is 6 base pairs, and the minimum RNA-DNA “gap size” that supports cleavage is 5 base pairs.
Journal of Biological Chemistry | 2009
Walt F. Lima; Hongjiang Wu; Josh G. Nichols; Hong Sun; Heather M. Murray; Stanley T. Crooke
The endonuclease Argonaute2 (Ago2) mediates the degradation of the target mRNA within the RNA-induced silencing complex. We determined the binding and cleavage properties of recombinant human Ago2. Human Ago2 was unable to cleave preformed RNA duplexes and exhibited weaker binding affinity for RNA duplexes compared with the single strand RNA. The enzyme exhibited greater RNase H activity in the presence of Mn2+ compared with Mg2+. Human Ago2 exhibited weaker binding affinities and reduced cleavage activities for antisense RNAs with either a 5′-terminal hydroxyl or abasic nucleotide. Binding kinetics suggest that the 5′-terminal heterocycle base nucleates the interaction between the enzyme and the antisense RNA, and the 5′-phosphate stabilizes the interaction. Mn2+ ameliorated the effects of the 5′-terminal hydroxyl or abasic nucleotide on Ago2 cleavage activity and binding affinity. Nucleotide substitutions at the 3′ terminus of the antisense RNA had no effect on human Ago2 cleavage activity, whereas 2′-methoxyethyl substitutions at position 2 reduced binding and cleavage activity and 12–14 reduced the cleavage activity. RNase protection assays indicated that human Ago2 interacts with the first 14 nucleotides at the 5′-pole of the antisense RNA. Human Ago2 preloaded with the antisense RNA exhibited greater binding affinities for longer sense RNAs suggesting that the enzyme interacts with regions in the sense RNA outside the site for antisense hybridization. Finally, transiently expressed human Ago2 immunoprecipitated from HeLa cells contained the double strand RNA-binding protein human immunodeficiency virus, type 1, trans-activating response RNA-binding protein, and deletion mutants of Ago2 showed that trans-activating response RNA-binding protein interacts with the PIWI domain of the enzyme.
Nucleic Acids Research | 2007
Timothy A. Vickers; Walt F. Lima; Josh G. Nichols; Stanley T. Crooke
Administration of small interfering RNAs (siRNAs) leads to degradation of specific mRNAs utilizing the cellular RNA interference (RNAi) machinery. It has been demonstrated that co-administration of siRNAs may lead to attenuation of activity of one of the siRNAs. Utilizing antisense and siRNA-mediated RNA-induced silencing complex (RISC) gene reduction we show that siRNA competition is correlated with differences in the cellular expression levels of Ago2, while levels of other RISC proteins have no effect on competition. We also show that under certain conditions siRNA competition rather than reduction of cellular RISC levels may be responsible for apparent reduction in siRNA activity. Furthermore, exploiting siRNA competition, we show that the RISC pathway loads and results in detectable cleavage of the target RNA in ∼2 h after transfection. The RISC pathway is also capable of being reloaded even in the absence of new protein synthesis. RISC reloading and subsequent induction of detectable cleavage of a new target RNA, requires about 9–12 h following the initial transfection.
Journal of Biological Chemistry | 1997
Walt F. Lima; Venkatraman Mohan; Stanley T. Crooke
The ability of Escherichia coli RNase H1 to hydrolyze structured substrates containing antisense oligonucleotides preannealed to a 47-mer RNA was compared with its ability to hydrolyze unstructured substrates containing antisense oligonucleotides duplexed with 13-mer RNA. These results demonstrate that when antisense oligonucleotides were bound to structured RNA, the resultant duplexes were cleaved at rates significantly slower than when the same oligonucleotides were bound to unstructured oligoribonucleotides. Structured substrates exhibited fewer cleavage sites, and each cleavage site was cleaved less rapidly than in unstructured substrates. Furthermore, the enzymatic activity ofE. coli RNase H1 for the structured substrates was most affected when the cleavage sites corresponding to the enzymatically most active sites on the unstructured substrates were blocked in the structured substrates. Molecular modeling suggests that the observed ablation of RNase H activity was due to the steric hindrance of the enzyme by the structured RNA, i.e. steric interference of the phosphate groups on the substrate and/or the binding site of the enzyme. When chimeric oligonucleotides composed of a five-base deoxynucleotide sequence flanked by chemically modified nucleotides were bound to structured RNA, the resultant duplexes were even worse substrates for RNase H. These results offer further insights into the role of antisense-induced RNA structure on RNase H activity and may facilitate the design of effective antisense oligonucleotides.
Molecular Pharmacology | 2006
Walt F. Lima; John B. Rose; Josh G. Nichols; Hongjiang Wu; Michael T. Migawa; Tadeusz K. Wyrzykiewicz; Andrew M. Siwkowski; Stanley T. Crooke
In a previous study, we demonstrated that the sugar conformation and helical geometry of the heteroduplex substrate at the catalytic site of human RNase H1 directs the selective recognition of the substrate by the enzyme (J Biol Chem 279: 36317-36326, 2004). In this study, we systematically introduced 2′-methoxyethoxy (MOE) nucleotides into the antisense oligodeoxyribonucleotide (ASO) of the heteroduplex to alter the helical geometry of the substrate. The MOE substitutions at the 3′ and 5′ poles of the ASO resulted in fewer cleavage sites and slower cleavage rates compared with the unmodified substrates. Furthermore, a greater reduction in cleavage activity was observed for MOE substitutions at the 5′ pole of the ASO. The 3′- and 5′-most cleavage sites were positioned two and four to five base pairs, respectively, from the nearest MOE residues, suggesting a conformational transmission of the MOE/RNA helical geometry into the DNA/RNA portion of the heteroduplex. Similar conformational transmission was observed for Okazaki-like substrates containing deoxyribonucleotide substitutions at the 3′ pole of the oligoribonucleotide. Finally, the heteroduplex substrates exhibited preferred cleavage sites that were cleaved 2- to 3-fold faster than other sites in the substrate, and these sites exhibited the greatest influence on the initial cleavage rates. The data presented here offer further insights into the role substrate structure plays in directing human RNase H1 activity as well as the design of effective ASOs.
Journal of Biological Chemistry | 1997
Walt F. Lima; Stanley T. Crooke
RNase H1 from Escherichia colicleaves single strand RNA extending 3′ from an RNA-DNA duplex. Substrates consisting of a 25-mer RNA annealed to complementary DNA ranging in length from 9–17 nucleotides were designed to create overhanging single strand RNA regions extending 5′ and 3′ from the RNA-DNA duplex. Digestion of single strand RNA was observed exclusively within the 3′ overhang region and not the 5′ overhang region. RNase H digestion of the 3′ overhang region resulted in digestion products with 5′-phosphate and 3′-hydroxyl termini. The number of single strand RNA residues cleaved by RNase H is influenced by the sequence of the single strand RNA immediately adjacent to the RNA-DNA duplex and appears to be a function of the stacking properties of the RNA residues adjacent to the RNA-DNA duplex. RNase H digestion of the 3′ overhang region was not observed for a substrate that contained a 2′-methoxy antisense strand. The introduction of 3 deoxynucleotides at the 5′ terminus of the 2′-methoxy antisense oligonucleotide resulted in cleavage. These results offer additional insights into the binding directionality of RNase H with respect to the heteroduplex substrate.
Journal of Biological Chemistry | 2001
Hongjiang Wu; Walt F. Lima; Stanley T. Crooke
In this study we examine for the first time the roles of the various domains of human RNase H1 by site-directed mutagenesis. The carboxyl terminus of human RNase H1 is highly conserved with Escherichia coli RNase H1 and contains the amino acid residues of the putative catalytic site and basic substrate-binding domain of the E. coli RNase enzyme. The amino terminus of human RNase H1 contains a structure consistent with a double-strand RNA (dsRNA) binding motif that is separated from the conserved E. coli RNase H1 region by a 62-amino acid sequence. These studies showed that although the conserved amino acid residues of the putative catalytic site and basic substrate-binding domain are required for RNase H activity, deletion of either the catalytic site or the basic substrate-binding domain did not ablate binding to the heteroduplex substrate. Deletion of the region between the dsRNA-binding domain and the conserved E. coli RNase H1 domain resulted in a significant loss in the RNase H activity. Furthermore, the binding affinity of this deletion mutant for the heteroduplex substrate was ∼2-fold tighter than the wild-type enzyme suggesting that this central 62-amino acid region does not contribute to the binding affinity of the enzyme for the substrate. The dsRNA-binding domain was not required for RNase H activity, as the dsRNA-deletion mutants exhibited catalytic rates ∼2-fold faster than the rate observed for wild-type enzyme. Comparison of the dissociation constant of human RNase H1 and the dsRNA-deletion mutant for the heteroduplex substrate indicates that the deletion of this region resulted in a 5-fold loss in binding affinity. Finally, comparison of the cleavage patterns exhibited by the mutant proteins with the cleavage pattern for the wild-type enzyme indicates that the dsRNA-binding domain is responsible for the observed strong positional preference for cleavage exhibited by human RNase H1.
Journal of Biological Chemistry | 2009
Walt F. Lima; Heather M. Murray; Josh G. Nichols; Hongjiang Wu; Hong Sun; Thazha P. Prakash; Andres Berdeja; Hans Gaus; Stanley T. Crooke
Human Dicer is an integral component of the RNA interference pathway. Dicer processes premicro-RNA and double-strand RNA to, respectively, mature micro-RNA and short interfering RNA (siRNA) and transfers the processed products to the RNA-induced silencing complex. To better understand the factors that are important for the binding, translocation, and selective recognition of the siRNA strands, we determined the binding affinities of human Dicer for processed products (siRNA) and short single-strand RNAs (ssRNA). siRNAs and ssRNAs competitively inhibited human Dicer activity, suggesting that they are interacting with the active site of the enzyme. The dissociation constants (Kd) for unmodified siRNAs were 5-11-fold weaker compared with a 27-nucleotide double-strand RNA substrate. Chemically modified siRNAs exhibited binding affinities for Dicer comparable with the substrate. 3′-Dinucleotide overhangs in the siRNA affected the binding affinity of human Dicer for the siRNA and biased strand loading into RNA-induced silencing complex. The Kd values for the ssRNAs ranged from 3- to 40-fold weaker than the Kd for the substrate. Sequence composition of the 3′-terminal nucleotides of the ssRNAs exhibited the greatest effect on Dicer binding. Dicer cleaved substrates containing short siRNA-like double-strand regions and extended 3′ or 5′ ssRNA overhangs in the adjacent ssRNA regions. Remarkably, cleavage sites were observed consistent with the enzyme entering the substrate from the extended 3′ ssRNA terminus. These data suggest that the siRNAs and ssRNAs interact predominantly with the PAZ domain of the enzyme. Finally, the tightest binding siRNAs were also more potent inhibitors of gene expression.