Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Walter Baratta is active.

Publication


Featured researches published by Walter Baratta.


Chemistry: A European Journal | 2011

Pincer and diamine Ru and Os diphosphane complexes as efficient catalysts for the dehydrogenation of alcohols to ketones.

Walter Baratta; Gianluca Bossi; Elisabetta Putignano; Pierluigi Rigo

The ruthenium and osmium complexes [MCl(2)(diphosphane)(L)] (M=Ru, Os; L=bidentate amino ligand) and [MCl(CNN)(dppb)] (CNN=pincer ligand; dppb=1,4-bis-(diphenylphosphino)butane), containing the N−H moiety, have been found to catalyze the acceptorless dehydrogenation of alcohols in tBuOH and in the presence of KOtBu. The compounds trans-[MCl(2)(dppf)(en)] (M=Ru 7, Os 13; dppf=1,1-bisdiphenylphosphino)ferrocene; en=ethylenediamine) display very high activity and different substrates, including cyclic and linear alcohols, are efficiently oxidized to ketones by using 0.8-0.04 molu2009% of catalyst. The effect of the base and the comparison of the catalytic activity of the Ru versus Os complexes are reported. The ruthenium complex 7 generally leads to a faster conversion into ketones with respect to the osmium complex 13, which displays better activity in the dehydrogenation of 5-en-3β-hydroxy steroids. The synthesis of new Ru and Os complexes [MCl(2)(PP)(L)] (PP=dppb, dppf; L=(±)-trans-1,2-diaminocyclohexane,2-(aminomethyl)pyridine, and 2-aminoethanol) of trans and cis configuration is also reported.


Angewandte Chemie | 2008

Osmium(II) CNN pincer complexes as efficient catalysts for both asymmetric transfer and H2 Hydrogenation of Ketones

Walter Baratta; Maurizio Ballico; Giorgio Chelucci; Katia Siega; Pierluigi Rigo

We describe the isolation of the first nCNN pincer osmium complexes [OsX(CNN)P 2 ] to display nhigh catalytic activity and productivity in the reduction of nketones by either TH or HY (TOFand TON up to 10 6 h 1 and n10 5 , respectively). A high enantioselectivity (up to 98% ee ) is npossible in both reactions with a remarkably low catalyst nloading (0.005–0.002 mol%). To the best of our knowledge, nthis is the first example of an osmium complex that catalyzes nthe asymmetric HY of ketones. Evidence for an Os-OR vs. nOs-H equilibrium suggests that both these species are ninvolved in the catalytic pathways. Mechanistic studies as nwell as the preparation of new CNN pincer osmium catalysts nare currently underway.


Chemistry: A European Journal | 2008

New Benzo[h]quinoline‐Based Ligands and their Pincer Ru and Os Complexes for Efficient Catalytic Transfer Hydrogenation of Carbonyl Compounds

Walter Baratta; Maurizio Ballico; Salvatore Baldino; Giorgio Chelucci; Eberhardt Herdtweck; Katia Siega; Santo Magnolia; Pierluigi Rigo

New benzo[h]quinoline ligands (HCNN) containing a CHRNH2 (R=H (a), Me (b), tBu (c)) function in the 2-position were prepared starting from benzo[h]quinoline N-oxide (in the case of ligand a) and 2-chlorobenzo[h]quinoline (for ligands b and c). These compounds were used to prepare ruthenium and osmium complexes, which are excellent catalysts for the transfer hydrogenation (TH) of ketones. The reaction of a with [RuCl2(PPh3)3] in 2-propanol at reflux afforded the terdentate CNN complex [RuCl(CNN)(PPh3)2] (1), whereas the complexes [RuCl(CNN)(dppb)] (2-4; dppb=Ph2P(CH2)4PPh2) were obtained from [RuCl2(PPh3)(dppb)] with a-c, respectively. Employment of (R,S)-Josiphos, (S,R)-Josiphos*, (S,S)-Skewphos, and (S)-MeO-Biphep in combination with [RuCl2(PPh3)3] and ligand a gave the chiral derivatives [RuCl(CNN)(PP)] (5-8). The osmium complex [OsCl(CNN)(dppb)] (12) was prepared by treatment of [OsCl2(PPh3)3] with dppb and ligand a. Reaction of the chloride 2 and 12 with NaOiPr in 2-propanol/toluene afforded the hydride complexes [MH(CNN)(dppb)] (M=Ru 10, Os 14), through elimination of acetone from [M(OiPr)(CNN)(dppb)] (M=Ru 9, Os 13). The species 9 and 13 easily reacted with 4,4-difluorobenzophenone, via 10 and 14, respectively, affording the corresponding isolable alkoxides [M(OR)(CNN)(dppb)] (M=Ru 11, Os 15). The complexes [MX(CNN)(P2)] (1-15) (M=Ru, Os; X=Cl, H, OR; P=PPh3 and P2=diphosphane) are efficient catalysts for the TH of carbonyl compounds with 2-propanol in the presence of NaOiPr (2 mol %). Turnover frequency (TOF) values up to 1.8x10(6) h(-1) have been achieved using 0.02-0.001 mol % of catalyst. Much the same activity has been observed for the Ru--Cl, --H, --OR, and the Os--Cl derivatives, whereas the Os--H and Os--OR derivatives display significantly lower activity on account of their high oxygen sensitivity. The chiral Ru complexes 5-8 catalyze the asymmetric TH of methyl-aryl ketones with TOF approximately 10(5) h(-1) at 60 degrees C, up to 97 % enatiomeric excess (ee) and remarkably high productivity (0.005 mol % catalyst loading). High catalytic activity (TOF up to 2.2x10(5) h(-1)) and enantioselectivity (up to 98 % ee) have also been achieved with the in-situ-generated catalysts prepared from [MCl2(PPh3)3], (S,R)-Josiphos or (S,R)-Josiphos*, and the benzo[h]quinoline ligands a-c.


Chemistry: A European Journal | 2009

Highly Productive CNN Pincer Ruthenium Catalysts for the Asymmetric Reduction of Alkyl Aryl Ketones

Walter Baratta; Giorgio Chelucci; Santo Magnolia; Katia Siega; Pierluigi Rigo

Chiral pincer ruthenium complexes of formula [RuCl(CNN)(Josiphos)] (2-7; Josiphos = 1-[1-(dicyclohexylphosphano)ethyl]-2-(diarylphosphano)ferrocene) have been prepared by treating [RuCl(2)(PPh(3))(3)] with (S,R)-Josiphos diphosphanes and 1-substituted-1-(6-arylpyridin-2-yl)methanamines (HCNN; substituent = H (1 a), Me (1 b), and tBu (1 c)) with NEt(3). By using 1 b and 1 c as a racemic mixture, complexes 4-7 were obtained through a diastereoselective synthesis promoted by acetic acid. These pincer complexes, which display correctly matched chiral PP and CNN ligands, are remarkably active catalysts for the asymmetric reduction of alkyl aryl ketones in basic alcohol media by both transfer hydrogenation (TH) and hydrogenation (HY), achieving enantioselectivities of up to 99 %. In 2-propanol, the enantioselective TH of ketones was accomplished by using a catalyst loading as low as 0.002 mol % and afforded a turnover frequency (TOF) of 10(5)-10(6) h(-1) (60 and 82 degrees C). In methanol/ethanol mixtures, the CNN pincer complexes catalyzed the asymmetric HY of ketones with H(2) (5 atm) at 0.01 mol % relative to the complex with a TOF of approximately 10(4) h(-1) at 40 degrees C.


Chemistry: A European Journal | 2008

Osmium Pyme Complexes for Fast Hydrogenation and Asymmetric Transfer Hydrogenation of Ketones

Walter Baratta; Maurizio Ballico; Alessandro Del Zotto; Katia Siega; Santo Magnolia; Pierluigi Rigo

The osmium compound trans,cis-[OsCl2(PPh3)2(Pyme)] (1) (Pyme=1-(pyridin-2-yl)methanamine), obtained from [OsCl2(PPh3)3] and Pyme, thermally isomerizes to cis,cis-[OsCl2(PPh3)(2)(Pyme)] (2) in mesitylene at 150 degrees C. Reaction of [OsCl2(PPh3)3] with Ph2P(CH2)(4)PPh2 (dppb) and Pyme in mesitylene (150 degrees C, 4 h) leads to a mixture of trans-[OsCl2(dppb)(Pyme)] (3) and cis-[OsCl2(dppb)(Pyme)] (4) in about an 1:3 molar ratio. The complex trans-[OsCl2(dppb)(Pyet)] (5) (Pyet=2-(pyridin-2-yl)ethanamine) is formed by reaction of [OsCl2(PPh3)3] with dppb and Pyet in toluene at reflux. Compounds 1, 2, 5 and the mixture of isomers 3/4 efficiently catalyze the transfer hydrogenation (TH) of different ketones in refluxing 2-propanol and in the presence of NaOiPr (2.0 mol %). Interestingly, 3/4 has been proven to reduce different ketones (even bulky) by means of TH with a remarkably high turnover frequency (TOF up to 5.7 x 10(5) h(-1)) and at very low loading (0.05-0.001 mol %). The system 3/4 also efficiently catalyzes the hydrogenation of many ketones (H2, 5.0 atm) in ethanol with KOtBu (2.0 mol %) at 70 degrees C (TOF up to 1.5 x 10(4) h(-1)). The in-situ-generated catalysts prepared by the reaction of [OsCl2(PPh3)3] with Josiphos diphosphanes and (+/-)-1-alkyl-substituted Pyme ligands, promote the enantioselective TH of different ketones with 91-96 % ee (ee=enantiomeric excess) and with a TOF of up to 1.9 x 10(4) h(-1) at 60 degrees C.


Angewandte Chemie | 1999

[RuCl2{PPh2(2,6‐Me2C6H3)}2]: A Neutral 14‐Electron Ruthenium(II) Complex with Two Agostic Interactions

Walter Baratta; Eberhardt Herdtweck; Pierluigi Rigo

Bidentate ligand behavior is shown by (2,6-dimethylphenyl)diphenylphosphane in the title compound: In the nearly octahedral environment of the ruthenium atom two coordination sites are occupied by methyl groups of the two xylyl substituents. NMR investigation and an X-ray analysis (see picture) reveal that the methyl groups act as weak donors to form two strong agostic Ru⋅⋅⋅C-H interactions.


Chemistry: A European Journal | 2008

Role of the NH2 Functionality and Solvent in Terdentate CNN Alkoxide Ruthenium Complexes for the Fast Transfer Hydrogenation of Ketones in 2-Propanol

Walter Baratta; Maurizio Ballico; Gennaro Esposito; Pierluigi Rigo

The reaction of [RuCl(CNN)(dppb)] (1; HCNN=6-(4-methylphenyl)-2-pyridylmethylamine) with NaOiPr in 2-propanol/C6D6 affords the alcohol adduct alkoxide [Ru(OiPr)(CNN)(dppb)].n iPrOH (5), containing the Ru-NH2 linkage. The alkoxide [Ru(OiPr)(CNN)(dppb)] (4) is formed by treatment of the hydride [Ru(H)(CNN)(dppb)] (2) with acetone in C6D6. Complex 5 in 2-propanol/C6D6 equilibrates quickly with hydride 2 and acetone with an exchange rate of (5.4+/-0.2) s(-1) at 25 degrees C, higher than that found between 4 and 2 ((2.9+/-0.4) s(-1)). This fast process, involving a beta-hydrogen elimination versus ketone insertion into the Ru-H bond, occurs within a hydrogen-bonding network favored by the Ru-NH2 motif. The cationic alcohol complex [Ru(CNN)(dppb)(iPrOH)](BAr(f)4) (6; Ar(f)=3,5-C6H3(CF3)2), obtained from 1, Na[BAr(f)4], and 2-propanol, reacts with NaOiPr to afford 5. Complex 5 reacts with either 4,4-difluorobenzophenone through hydride 2 or with 4,4-difluorobenzhydrol through protonation, affording the alkoxide [Ru(OCH(4-C6H4F)2)(CNN)(dppb)] (7) in 90 and 85 % yield of the isolated product. The chiral CNN-ruthenium compound [RuCl(CNN)((S,S)-Skewphos)] (8), obtained by the reaction of [RuCl2(PPh3)3] with (S,S)-Skewphos and orthometalation of HCNN in the presence of NEt3, is a highly active catalyst for the enantioselective transfer hydrogenation of methylaryl ketones (turnover frequencies (TOFs) of up to 1.4 x 10(6) h(-1) at reflux were obtained) with up to 89% ee. Also the ketone CF3CO(4-C6H4F), containing the strong electron-withdrawing CF3 group, is reduced to the R alcohol with 64% ee and a TOF of 1.5 x 10(4) h(-1). The chiral alkoxide [Ru(OiPr)(CNN)((S,S)-Skewphos)]n iPrOH (9), obtained from 8 and NaOiPr in the presence of 2-propanol, reacts with CF3CO(4-C6H4F) to afford a mixture of the diastereomer alkoxides [Ru(OCH(CF3)(4-C6H4F))(CNN)((S,S)-Skewphos)] (10/11; 74% yield) with 67% de. This value is very close to the enantiomeric excess of the alcohol (R)-CF3CH(OH)(4-C6H4F) formed in catalysis, thus suggesting that diastereoisomeric alkoxides with the Ru-NH2 linkage are key species in the catalytic asymmetric transfer hydrogenation reaction.


Accounts of Chemical Research | 2015

Recent Advances in Osmium-Catalyzed Hydrogenation and Dehydrogenation Reactions

Giorgio Chelucci; Salvatore Baldino; Walter Baratta

CONSPECTUS: A current issue in metal-catalyzed reactions is the search for highly efficient transition-metal complexes affording high productivity and selectivity in a variety of processes. Moreover, there is also a great interest in multitasking catalysts that are able to efficiently promote different organic transformations by careful switching of the reaction parameters, such as temperature, solvent, and cocatalyst. In this context, osmium complexes have shown the ability to catalyze efficiently different types of reactions involving hydrogen, proving at the same time high thermal stability and simple synthesis. In the catalytic reduction of C═X (X = O, N) bonds by both hydrogenation (HY) and transfer hydrogenation (TH) reactions, the most interest has been focused on homogeneous systems based on rhodium, iridium, and in particular ruthenium catalysts, which have proved to catalyze chemo- and stereoselective hydrogenations with remarkable efficiency. By contrast, osmium catalysts have received much less attention because they are considered less active on account of their slower ligand exchange kinetics. Thus, this area remained almost neglected until recent studies refuted these prejudices. The aim of this Account is to highlight the impressive developments achieved over the past few years by our and other groups on the design of new classes of osmium complexes and their applications in homogeneous catalytic reactions involving the hydrogenation of carbon-oxygen and carbon-nitrogen bonds by both HY and TH reactions as well as in alcohol deydrogenation (DHY) reactions. The work described in this Account demonstrates that osmium complexes are emerging as powerful catalysts for asymmetric and non-asymmetric syntheses, showing a remarkably high catalytic activity in HY and TH reactions of ketones, aldehydes, imines, and esters as well in DHY reactions of alcohols. Thus, for instance, the introduction of ligands with an NH function, possibly in combination with a pyridine ring, led to a new family of [OsCl2(PP)(NN)] (NN = diamine, 2-aminomethylpyridine; PP = diphosphine) and pincer [OsCl(CNN)(PP)] (HCNN = 6-aryl-2-aminomethylpyridine, 2-aminomethylbenzo[h]quinoline) complexes, which are outstanding catalysts for (asymmetric) HY and TH of carbonyl compounds and DHY of alcohols with turnover numbers and turnover frequencies up to 10(5) and 10(6) h(-1), respectively. In addition, PNN osmium complexes containing the 2-aminomethylpyridine motif have been found to be among the most active catalysts for HY of esters. These complexes have shown catalytic activities that are comparable and in some cases superior to those reported for analogous ruthenium systems. These results give an idea of the potential of Os complexes for the design of new highly productive and robust catalysts for the synthesis of chiral and nonchiral alcohols and amines as well as ketones from alcohols. Thus, we hope that this report will promote increased interest in the chemistry of these metal complexes, opening novel opportunities for new catalytic processes as well as the improvement of existing ones.


Chemistry: A European Journal | 2010

Chiral and Nonchiral [OsX2(diphosphane)(diamine)] (X: Cl, OCH2CF3) Complexes for Fast Hydrogenation of Carbonyl Compounds

Walter Baratta; Cinzia Barbato; Santo Magnolia; Katia Siega; Pierluigi Rigo

The osmium complexes trans-[OsCl(2)(dppf)(diamine)] (dppf: 1,1-bis(diphenylphosphino)ferrocene; diamine: ethylenediamine in 3, propylenediamine in 4) were prepared by the reaction of [OsCl(2)(PPh(3))(3)] (1) with the ferrocenyl diphosphane, dppf and the corresponding diamine in dichloromethane. The reaction of derivative 3 with NaOCH(2)CF(3) in toluene afforded the alkoxide cis-[Os(OCH(2)CF(3))(2)(dppf)(ethylenediamine)] (5). The novel precursor [Os(2)Cl(4)(P(m-tolyl)(3))(5)] (2) allows the synthesis of the chiral complexes trans-[OsCl(2)(diphosphane)(1,2-diamine)] (6-9; diphosphane: (R)-[6,6-dimethoxy(1,1-biphenyl)-2,2-diyl]bis[1,1-bis(3,5-dimethylphenyl)phosphane] (xylMeObiphep) or (R)-(1,1-binaphthalene)-2,2-diylbis[1,1-bis(3,5-dimethylphenyl)phosphane] (xylbinap); diamine=(R,R)-1,2-diphenylethylenediamine (dpen) or (R,R)-1,2-diaminocyclohexane (dach)), obtained by the treatment of 2 with the diphosphane and the 1,2-diamine in toluene at reflux temperature. Compounds 3-5 in ethanol and in the presence of NaOEt catalyze the reduction of methyl aryl, dialkyl, and diaryl ketones and aldehydes with H(2) at low pressure (5 atm), with substrate/catalyst (S/C) ratios of 10,000-200,000 and achieving turnover frequencies (TOFs) of up to 3.0 x 10(5) h(-1) at 70 degrees C. By employment of the chiral compounds 6-9, different ketones, including alkyl aryl, bulky tert-butyl, and cyclic ketones, have successfully been hydrogenated with enantioselectivities up to 99% and with S/C ratios of 5000-100,000 and TOFs of up to 4.1 x 10(4) h(-1) at 60 degrees C.


Journal of Organometallic Chemistry | 2000

Convenient syntheses of novel ruthenium catalysts bearing N-heterocyclic carbenes

Walter Baratta; Wolfgang A. Herrmann; Pierluigi Rigo; Jürgen Schwarz

Abstract The 16-electron ruthenium(II) complexes Cp*Ru[ C(R)N(H)Cue605C(H)N (R)]Cl (Cp*=η5-C5Me5; R=Cy (ICy), 1a; Mes (IMes), 1b) containing N-heterocyclic carbenes are easily accessible in quantitative yields from [Cp*Ru(OMe)]2 (Me=CH3) and the corresponding 1,3-diorganylimidazolium chloride by methanol elimination. Compounds 1a–b can also be prepared in 75–80% yield by treating the commercially available polymeric ruthenium(III) compound [Cp*RuCl2]n with the free 1,3-diorganylimidazolin-2-ylidenes in 1 to 1.5 molar amounts. 1a reacts with CO, PPh3, pyridine and ethyl diazoacetate (EDA) affording the 18-electron derivatives Cp*Ru(ICy)(L)Cl (L=CO, 2; PPh3, 3; py, 4; CHCO2Et, 5). The mixed dicarbene complex 5 is the first isolable ruthenium cyclopentadienyl species bearing a CHCO2Et moiety. Compounds 1a–b catalyze the carbonue5f8carbon coupling of terminal alkynes HCue606CR (R=Ph, SiMe3, tBu, p-Tol) under mild conditions, with the selectivity strongly depending on the substituent R.

Collaboration


Dive into the Walter Baratta's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge