Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Walter Landini is active.

Publication


Featured researches published by Walter Landini.


Journal of the Geological Society | 2006

Mare versus Lago-mare: marine fishes and the Mediterranean environment at the end of the Messinian Salinity Crisis

G. Carnevale; Walter Landini; G. Sarti

During the late Messinian, c. 5.5 Ma ago, after evaporitic sedimentation and before the Pliocene flooding, the Mediterranean recorded a major environmental change testified by deposition of non-marine sediments of the so-called ‘Lago-mare’ facies. Such deposits are widespread in the Mediterranean basin, usually characterized by molluscs and ostracodes of brackish affinity. Here we present marine fish remains from ‘Lago-mare’ deposits of central Italy. The fossils, represented by both articulated skeletons and otoliths, were collected from nine stratigraphic horizons of the upper portion of the ‘Lago-mare’ sequence of Cava Serredi, Tuscany. Marine euryhaline fishes strongly dominate the assemblages but fully marine stenohaline fishes belonging to the families Myctophidae and Bythitidae are also present. The fossil fish remains are associated with classic ‘Lago-mare’ ostracodes and molluscs. These fossil fishes clearly demonstrate that normal marine conditions were present at least during the upper interval of the ‘Lago-mare’ event, implying that the marine refilling of the Mediterranean was intra-Messinian rather early Pliocene. We argue in favour of the necessity of a new palaeoenvironmental interpretation for the post-evaporitic Messinian of the Mediterranean.


Journal of Maps | 2016

Distribution of fossil marine vertebrates in Cerro Colorado, the type locality of the giant raptorial sperm whale Livyatan melvillei (Miocene, Pisco Formation, Peru)

Giovanni Bianucci; Claudio Di Celma; Walter Landini; Klaas Post; Chiara Tinelli; Christian de Muizon; Karen Gariboldi; Elisa Malinverno; Gino Cantalamessa; Anna Gioncada; Alberto Collareta; Rodolfo-Salas Gismondi; Rafael Varas-Malca; Mario Urbina; Olivier Lambert

Hundreds of fossil marine vertebrates cropping out at Cerro Colorado (Pisco Basin, Peru) are identified and reported on a 1:6500 scale geological map and in a joined stratigraphic section. All the fossils are from the lower strata of the Pisco Formation, dated in this area to the late middle or early late Miocene. They are particularly concentrated (88%) in the stratigraphic interval from 40 to 75 m above the unconformity with the underlying Chilcatay Formation. The impressive fossil assemblage includes more than 300 specimens preserved as bone elements belonging mostly to cetaceans (81%), represented by mysticetes (cetotheriids and balaenopteroids) and odontocetes (kentriodontid-like delphinidans, pontoporiids, ziphiids, and physeteroids, including the giant raptorial sperm whale Livyatan melvillei). Seals, crocodiles, sea turtles, seabirds, bony fish, and sharks are also reported. Isolated large teeth of Carcharocles and Cosmopolitodus are common throughout the investigated stratigraphical interval, whereas other shark teeth, mostly of carcharinids, are concentrated in one sandy interval. This work represents a first detailed census of the extraordinary paleontological heritage of the Pisco Basin and the basis for future taphonomic, paleoecological, and systematic studies, as well as a much needed conservation effort for this extremely rich paleontological site.


Geological Society of America Bulletin | 2005

Basin physiography and tectonic influence on sequence architecture and stacking pattern: Pleistocene succession of the Canoa Basin (central Ecuador)

Claudio Di Celma; Luca Ragaini; Gino Cantalamessa; Walter Landini

Facies, shell bed features, and sequence stratigraphic framework for the shallow-marine Pleistocene upper Canoa and Tablazo Formations are presented, based on outcrop data from the southern coast of Cabo San Lorenzo, Ecuador. Sediments of this succession exhibit a distinct cyclic pattern, consisting of a stack of eight depositional sequences (cyclothems) likely developed under the main control of orbitally induced sea-level changes. As a rule, within the studied interval an idealized cyclothem is composed of a transgressive systems tract (TST) and a highstand systems tract (HST), whereas deposits attributable to the lowstand and falling-stage systems tracts are not present. Transgressive lithosomes may be defined by estuarine deposits interposed between the sequence boundary and the ravinement surface (back-barrier wedge) and by upward fining shoreface to inner-shelf facies successions above the ravinement (backstepping shelf wedge). Separated by an expanded siliciclastic core, hiatal shell concentrations occur at the base (onlap shell beds) and the top (backlap shell beds) of the transgressive shelf wedges, and some occur at the base of highstand systems tracts (downlap shell beds). On the basis of sedimentary facies, geometry, taphonomy, and paleoecology of shell beds, and the nature of the transition between siliciclastic and mollusk-bearing sediments, cyclothems were classified into two main types that show dependence upon paleoshoreline morphological configuration: sheltered (in the upper Canoa Formation) and exposed (in the Tablazo Formation). Notwithstanding the different synsedimentary tectonic and climatic regimes, the Ecuadorian cyclothems share basic patterns of condensation and facies assemblages with other roughly coeval cyclothemic successions around the world. This suggests that (1) hiatal shell bed development is not just a temperate-latitude phenomenon; (2) a global process, such as glacio-eustatic sea-level change, is the primary mechanism of control for the general architecture of sequences; and (3) specific paleogeographic settings play an important role by determining the taphonomic and paleoecologic characteristics of key shell beds, the nature of their contacts with the encasing sediments, and the type of the component set of facies. At a multicycle time scale, tectonics influenced the long-term trend of the relative sea-level changes and consequently the large-scale stratigraphic organization. Owing to the continued tectonic uplift of the area, successive high-frequency depositional sequences are nested to form a longer-order falling-stage sequence set.


Proceedings of the Royal Society B: Biological Sciences | 2015

No deep diving: evidence of predation on epipelagic fish for a stem beaked whale from the Late Miocene of Peru.

Olivier Lambert; Alberto Collareta; Walter Landini; Klaas Post; Benjamin Ramassamy; Claudio Di Celma; Mario Urbina; Giovanni Bianucci

Although modern beaked whales (Ziphiidae) are known to be highly specialized toothed whales that predominantly feed at great depths upon benthic and benthopelagic prey, only limited palaeontological data document this major ecological shift. We report on a ziphiid–fish assemblage from the Late Miocene of Peru that we interpret as the first direct evidence of a predator–prey relationship between a ziphiid and epipelagic fish. Preserved in a dolomite concretion, a skeleton of the stem ziphiid Messapicetus gregarius was discovered together with numerous skeletons of a clupeiform fish closely related to the epipelagic extant Pacific sardine (Sardinops sagax). Based on the position of fish individuals along the head and chest regions of the ziphiid, the lack of digestion marks on fish remains and the homogeneous size of individuals, we propose that this assemblage results from the death of the whale (possibly via toxin poisoning) shortly after the capture of prey from a single school. Together with morphological data and the frequent discovery of fossil crown ziphiids in deep-sea deposits, this exceptional record supports the hypothesis that only more derived ziphiids were regular deep divers and that the extinction of epipelagic forms may coincide with the radiation of true dolphins.


Journal of Maps | 2016

Stratigraphic framework of the late Miocene to Pliocene Pisco Formation at Cerro Colorado (Ica Desert, Peru)

C. Di Celma; Elisa Malinverno; Karen Gariboldi; Anna Gioncada; Andrea Rustichelli; Pietro Paolo Pierantoni; Walter Landini; Giulia Bosio; Chiara Tinelli; Giovanni Bianucci

This paper describes a ∼200 m-thick section of the Pisco Formation exposed at Cerro Colorado, an important fossiliferous site in the Ica desert. In order to properly place the fauna in its correct relative position, this study establishes the stratigraphic framework within which the different fossil-bearing intervals of this site can be compared and may prove invaluable in future high-resolution studies on the faunal change. Most of the Pisco Formation deposits exposed at Cerro Colorado consist of gently dipping fine-grained sandstones, diatomaceous siltstones and diatomites with minor ash layers and dolomites deposited within nearshore and offshore settings. To facilitate detailed stratigraphic correlations within the Pisco strata for a 30 km2 area, eight marker beds have been defined and large-scale (1:10,000 scale) geological mapping conducted to determine fault positions, styles and offsets. The geological map shows that there are two important angular unconformities in the study area. The first one is the interformational basal unconformity of the Pisco Formation against folded, faulted, and planated Oligo-Miocene rocks of the Chilcatay Formation. The second is a low-angle intraformational erosional discontinuity of up to 4° angular discordance that allows the subdivision of the Pisco stratigraphy exposed in the study area into two informal allomembers. Dating of the exposed succession by diatom biostratigraphy suggests that the age of the lower allomember is late Miocene, whereas the upper allomember is late Miocene or younger.


Geobios | 2002

Change in diversity, ecological significance and biogeographical relationships of the Mediterranean Miocene toothed whale fauna

Giovanni Bianucci; Walter Landini

Abstract The main evolutionary trend in the Mediterranean Miocene toothed whale fauna is related (1) to the change in diversity and (2) to the turnover in community structure. Diversity increases from Upper Aquitanian–Lower Burdigalian to Burdigalian–Langhian, when it reaches its maximum. Starting from this time, diversity decreases progressively. The Early Miocene (Upper Aquitanian–Lower Burdigalian) Mediterranean toothed whale fauna, as well as the extramediterranean ones, is characterised by a high number of endemic taxa and by the prevalence of longirostral forms living in estuarine-neritic environments. A more diversified fauna spreading in neritic and pelagic environments characterises the Burdigalian–Langhian age, while an increase in pelagic forms and the nearly complete disappearance of some archaic longirostral taxa is typical of the Serravallian–Messinian fauna. Decrease in diversity and disappearance of archaic longirostral taxa are also recorded, at more general scale, in the Late Miocene extramediterranean fossil bearing deposits. These events can be related to the progressive global climatic deterioration, starting from Middle Miocene. From a biogeographic point a view, we can outline some relationships between the Mediterranean and western North Atlantic Miocene faunas. Closer affinities are observed between the Baltringen fauna and the northern Atlantic one, because of the presence of the genera Pomatodelphis and Zarhachis (platanistids) in both areas. In the Miocene Mediterranean and in North Atlantic, the delphinids are apparently absent as well as other extant delphinoid groups even if erroneously recorded in the past.


Journal of Paleontology | 2006

VOLHYNIAN (EARLY SARMATIAN SENSU LATO) FISHES FROM TSUREVSKY, NORTH CAUCASUS, RUSSIA

Giorgio Carnevale; Alexandre F. Bannikov; Walter Landini; Chiara Sorbini

Abstract A new fish fauna is described from the late Middle Miocene (Volhynian; early Sarmatian sensu lato) of Tsurevsky, North Caucasus, Russia. Ten taxa belonging to nine families are described, of which two may be new (Micromesistius sp., Bothus sp.), but not formally described awaiting better-preserved material. The predominant faunal element is Sardinella sardinites, including more than 42% of all investigated specimens. The paleoecological analysis reveals a semienclosed marine environment not far from the coast, characterized by shallow depths and a soft bottom. The sedimentological features of the deposits and the preservation of the specimens suggest that periodic oxygen minima affected the bottom waters, causing repeated hypoxic events, probably related to the decay of organic matter previously accumulated in the basin. Paleoenvironmental considerations of fish faunas from several Paratethyan localities suggest that marine waters characterized by a little shift in chemical composition (high alkalinity) filled up the entire basin during the Sarmatian.


Naturwissenschaften | 2015

Piscivory in a Miocene Cetotheriidae of Peru: first record of fossilized stomach content for an extinct baleen-bearing whale

Alberto Collareta; Walter Landini; Olivier Lambert; Klaas Post; Chiara Tinelli; Claudio Di Celma; Daniele Panetta; Maria Tripodi; Piero A. Salvadori; Davide Caramella; Damiano Marchi; Mario Urbina; Giovanni Bianucci

Instead of teeth, modern mysticetes bear hair-fringed keratinous baleen plates that permit various bulk-filtering predation techniques (from subsurface skimming to lateral benthic suction and engulfment) devoted to various target prey (from small invertebrates to schooling fish). Current knowledge about the feeding ecology of extant cetaceans is revealed by stomach content analyses and observations of behavior. Unfortunately, no fossil stomach contents of ancient mysticetes have been described so far; the investigation of the diet of fossil baleen whales, including the Neogene family Cetotheriidae, remains thus largely speculative. We report on an aggregate of fossil fish remains found within a mysticete skeleton belonging to an undescribed late Miocene (Tortonian) cetotheriid from the Pisco Formation (Peru). Micro-computed tomography allowed us to interpret it as the fossilized content of the forestomach of the host whale and to identify the prey as belonging to the extant clupeiform genus Sardinops. Our discovery represents the first direct evidence of piscivory in an ancient edentulous mysticete. Since among modern mysticetes only Balaenopteridae are known to ordinarily consume fish, this fossil record may indicate that part of the cetotheriids experimented some degree of balaenopterid-like engulfment feeding. Moreover, this report corresponds to one of the geologically oldest records of Sardinops worldwide, occurring near the Tortonian peak of oceanic primary productivity and cooling phase. Therefore, our discovery evokes a link between the rise of Cetotheriidae; the setup of modern coastal upwelling systems; and the radiation of epipelagic, small-sized, schooling clupeiform fish in such highly productive environments.


Journal of Maps | 2016

Fossil marine vertebrates of Cerro Los Quesos: Distribution of cetaceans, seals, crocodiles, seabirds, sharks, and bony fish in a late Miocene locality of the Pisco Basin, Peru

Giovanni Bianucci; Claudio Di Celma; Alberto Collareta; Walter Landini; Klaas Post; Chiara Tinelli; Christian de Muizon; Giulia Bosio; Karen Gariboldi; Anna Gioncada; Elisa Malinverno; Gino Cantalamessa; Ali J. Altamirano-Sierra; Rodolfo Salas-Gismondi; Mario Urbina; Olivier Lambert

ABSTRACT One-hundred and ninety-two fossil marine vertebrate specimens, preserved as bone elements cropping out at Cerro Los Quesos (Pisco Basin, Peru), are identified and reported on a 1:4,000 scale geological map and in the corresponding stratigraphic section. All the fossils originate from the Pisco Formation, which is dated in this area to the late Miocene (from 7.55 Ma to ≥6.71 Ma, based on 40Ar/39Ar analyses of three volcanic ash layers along the section). Specimens are particularly concentrated near the top of the two main hills, where the geologically youngest portion of the examined section crops out. The impressive fossil assemblage includes cetaceans (91.6%), represented by mysticetes (balaenopteroids and cetotheriids) and odontocetes (phocoenids, physeteroids, and ziphiids, including the holotype of Nazcacetus urbinai). Seals, a crocodile, a seabird, bony fish, and sharks are also reported. Isolated large teeth of Carcharocles and Cosmopolitodus are common and, in several instances, associated to mysticete skeletons. Together with a similar work recently published for the other late Miocene locality of Cerro Colorado, this work represents a case study for the detailed inventory of the extraordinary paleontological heritage of the Pisco Basin. As such, it constitutes the basis for future taphonomic, paleoecological, and systematic studies, as well as for a much-needed conservation effort.


Journal of Maps | 2016

Stratigraphic framework of the late Miocene Pisco Formation at Cerro Los Quesos (Ica Desert, Peru)

C. Di Celma; Elisa Malinverno; Gino Cantalamessa; Anna Gioncada; Giulia Bosio; Igor M. Villa; Karen Gariboldi; Andrea Rustichelli; Pietro Paolo Pierantoni; Walter Landini; Chiara Tinelli; Alberto Collareta; Giovanni Bianucci

The enormous concentration of marine vertebrates documented within the Pisco Formation is unique for Peru and South America and places this unit among the prime fossil Lagerstätten for Miocene to Pliocene marine mammals worldwide. In order to provide a robust stratigraphic framework for the fossil-bearing locality of Cerro Los Quesos, this study presents a 1:10,000 scale geological map covering an area of about 21 km2, a detailed measured section spanning 290 m of strata, and a refined chronostratigraphy for the studied succession well constrained by diatom biostratigraphy and high-resolution 40Ar/39Ar isotopic dating of three interbedded ash layers. Within the apparently monotonous, diatomite-dominated sedimentary section, the Pisco Formation has been subdivided into six local members, with stratigraphic control over the different outcrops facilitated by the establishment of a detailed marker bed stratigraphy based on 15 readily distinguishable sediment layers of different nature.

Collaboration


Dive into the Walter Landini's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

G. Valleri

University of Florence

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mario Urbina

National University of San Marcos

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge