Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Walter R. Weiss is active.

Publication


Featured researches published by Walter R. Weiss.


Journal of Experimental Medicine | 2006

Toll-like receptor agonists influence the magnitude and quality of memory T cell responses after prime-boost immunization in nonhuman primates

Ulrike Wille-Reece; Barbara J. Flynn; Karin Loré; Richard A. Koup; Aaron P. Miles; Allan Saul; Ross M. Kedl; Joseph J. Mattapallil; Walter R. Weiss; Mario Roederer; Robert A. Seder

There is a remarkable heterogeneity in the functional profile (quality) of T cell responses. Importantly, the magnitude and/or quality of a response required for protection may be different depending on the infection. Here, we assessed the capacity of different Toll like receptor (TLR)-binding compounds to influence T helper cell (Th)1 and CD8+ T cell responses when used as adjuvants in nonhuman primates (NHP) with HIV Gag as a model antigen. NHP were immunized with HIV Gag protein emulsified in Montanide ISA 51, an oil-based adjuvant, with or without a TLR7/8 agonist, a TLR8 agonist, or the TLR9 ligand cytosine phosphate guanosine oligodeoxynucleotides (CpG ODN), and boosted 12 wk later with a replication-defective adenovirus-expressing HIV-Gag (rAD-Gag). Animals vaccinated with HIV Gag protein/Montanide and CpG ODN or the TLR7/8 agonist had higher frequencies of Th1 responses after primary immunization compared to all other vaccine groups. Although the rAD-Gag boost did not elevate the frequency of Th1 memory cytokine responses, there was a striking increase in HIV Gag-specific CD8+ T cell responses after the boost in all animals that had received a primary immunization with any of the TLR adjuvants. Importantly, the presence and type of TLR adjuvant used during primary immunization conferred stability and dramatically influenced the magnitude and quality of the Th1 and CD8+ T cell responses after the rAD-Gag boost. These data provide insights for designing prime-boost immunization regimens to optimize Th1 and CD8+ T cell responses.


Journal of Immunology | 2000

Improving Protective Immunity Induced by DNA-Based Immunization: Priming with Antigen and GM-CSF-Encoding Plasmid DNA and Boosting with Antigen-Expressing Recombinant Poxvirus

Martha Sedegah; Walter R. Weiss; John B. Sacci; Yupin Charoenvit; Richard C. Hedstrom; Kalpana Gowda; Victoria Majam; John A. Tine; Sanjai Kumar; Peter Hobart; Stephen L. Hoffman

Intramuscular immunization with a naked DNA plasmid expressing the Plasmodium yoelii circumsporozoite protein (pPyCSP) protects mice against challenge with P. yoelii sporozoites. This protection can be improved either by coadministration of a plasmid expressing murine GM-CSF (pGMCSF) or by boosting with recombinant poxvirus expressing the PyCSP. We now report that combining these two strategies, by first mixing the priming dose of pPyCSP with pGMCSF and then boosting with recombinant virus, can substantially increase vaccine effectiveness. Not only were immune responses and protection improved but the pPyCSP dose could be lowered from 100 μg to 1 μg with little loss of immunogenicity after boost with recombinant poxvirus. Comparing mice primed by the 1-μg doses of pPyCSP plus 1 μg pGMCSF with mice primed by 1-μg doses of pPyCSP alone, the former were better protected (60% vs 0) and had higher concentrations of Abs (titers of 163, 840 vs 5, 120 by indirect fluorescent Ab test against sporozoites), more ex vivo CTL activity (25% vs 7% specific lysis), and more IFN-γ-secreting cells by enzyme-linked immunospot assay (1460 vs 280 IFN-γ spot-forming cells/106 cells). Priming with plasmid vaccine plus pGMCSF and boosting with recombinant poxviruses strongly improves the immunogenicity and protective efficacy of DNA vaccination and allows for significant reduction of dose.


Journal of Immunology | 2000

Plasmid Vaccine Expressing Granulocyte-Macrophage Colony-Stimulating Factor Attracts Infiltrates Including Immature Dendritic Cells into Injected Muscles

Diana Haddad; Jayanthi Ramprakash; Martha Sedegah; Yupin Charoenvit; Roxanne E. Baumgartner; Sanjai Kumar; Stephen L. Hoffman; Walter R. Weiss

Plasmid-encoded GM-CSF (pGM-CSF) is an adjuvant for genetic vaccines; however, little is known about how pGM-CSF enhances immunogenicity. We now report that pGM-CSF injected into mouse muscle leads to a local infiltration of potential APCs. Infiltrates reached maximal size on days 3 to 5 after injection and appeared in several large discrete clusters within the muscle. Immunohistological studies in muscle sections from mice injected with pGM-CSF showed staining of cells with the macrophage markers CD11b, Mac-3, IAd/Ed and to the granulocyte marker GR-1 from day 1 through day 14. Cells staining with the dendritic cell marker CD11c were detected only on days 3 to 5. Muscles injected with control plasmids did not stain for CD11c but did stain for CD11b, Mac-3, IAd/Ed, and GR-1. No staining was observed with the APC activation markers, B7.1 or CD40, or with markers for T or B cells. These findings are consistent with the infiltrating cells in the pGM-CSF-injected muscles being a mixture of neutrophils, macrophages, and immature dendritic cells and suggest that the i.m. APCs may be enhancing immune responses to coinjected plasmid Ags. This hypothesis is supported by data showing that 1) separation of injections with pGM-CSF and Ag-expressing plasmid into different sites did not enhance immune responses and 2) immune enhancement was associated with the presence of CD11c+ cells in the infiltrates. Thus, pGM-CSF enhancement may depend on APC recruitment to the i.m. site of injection.


Journal of General Virology | 2000

Dengue virus type 1 DNA vaccine induces protective immune responses in rhesus macaques

Kanakatte Raviprakash; Kevin R. Porter; Tadeuscz J. Kochel; Daniel Ewing; Monica Simmons; Irving Phillips; Gerald S. Murphy; Walter R. Weiss; Curtis G. Hayes

A candidate DNA vaccine expressing dengue virus type 1 pre-membrane and envelope proteins was used to immunize rhesus macaques. Monkeys were immunized intramuscularly (i.m.) or intradermally (i.d.) by three or four 1 mg doses of vaccine, respectively. Monkeys that were inoculated i.m. seroconverted more quickly and had higher antibody levels than those that were inoculated i.d. The sera exhibited virus-neutralizing activity, which declined over time. Four of the eight i.m.-inoculated monkeys were protected completely from developing viraemia when challenged 4 months after the last dose with homologous dengue virus. The other four monkeys had reduced viraemia compared with the control immunized monkeys. The i.d. -inoculated monkeys showed no reduction in viraemia when challenged with the virus. All vaccinated monkeys showed an anamnestic antibody response, indicating that they had established immunological memory. Vaccine-induced antibody had an avidity index similar to that of antibody induced by virus infection; however, no clear correlation was apparent between antibody avidity and virus neutralization titres.


Infection and Immunity | 2001

Multistage Multiantigen Heterologous Prime Boost Vaccine for Plasmodium knowlesi Malaria Provides Partial Protection in Rhesus Macaques

William O. Rogers; J. Kevin Baird; Anita Kumar; John A. Tine; Walter R. Weiss; Joao C. Aguiar; Kalpana Gowda; Robert W. Gwadz; Sanjai Kumar; Mark Gold; Stephen L. Hoffman

ABSTRACT A nonhuman primate model for malaria vaccine development allowing reliable, stringent sporozoite challenge and evaluation of both cellular and antibody responses is needed. We therefore constructed a multicomponent, multistage DNA vaccine for the simian malaria species Plasmodium knowlesi including two preerythrocytic-stage antigens, the circumsporozoite protein (PkCSP) and sporozoite surface protein 2 (PkSSP2), and two blood stage antigens, apical merozoite antigen 1 (PkAMA1) and merozoite surface protein 1 (PkMSP1p42), as well as recombinant canarypox viruses encoding the four antigens (ALVAC-4). The DNA vaccine plasmids expressed the corresponding antigens in vitro and induced antiparasite antibodies in mice. Groups of four rhesus monkeys received three doses of a mixture of the four DNA vaccine plasmids and a plasmid encoding rhesus granulocyte-monocyte colony-stimulating factor, followed by boosting with a single dose of ALVAC-4. Three groups received the priming DNA doses by different routes, either by intramuscular needle injection, by intramuscular injection with a needleless injection device, the Biojector, or by a combination of intramuscular and intradermal routes by Biojector. Animals immunized by any route developed antibody responses against sporozoites and infected erythrocytes and against a recombinant PkCSP protein, as well as gamma interferon-secreting T-cell responses against peptides from PkCSP. Following challenge with 100 P. knowlesi sporozoites, 1 of 12 experimental monkeys was completely protected and the mean parasitemia in the remaining monkeys was significantly lower than that in 4 control monkeys. This model will be important in preclinical vaccine development.


Infection and Immunity | 2002

Protection of rhesus macaques against lethal Plasmodium knowlesi malaria by a heterologous DNA priming and poxvirus boosting immunization regimen

William O. Rogers; Walter R. Weiss; Anita Kumar; Joao C. Aguiar; John A. Tine; Robert W. Gwadz; Joseph G. Harre; Kalpana Gowda; Dharmendar Rathore; Sanjai Kumar; Stephen L. Hoffman

ABSTRACT We tested a cytokine-enhanced, multiantigen, DNA priming and poxvirus boosting vaccine regimen for prevention of malaria in the Plasmodium knowlesi-rhesus macaque model system. Animals were primed with a mixture of DNA plasmids encoding two preerythrocytic-stage proteins and two erythrocytic-stage proteins from P. knowlesi and combinations of the cytokines granulocyte-macrophage colony-stimulating factor, interleukin-4, and tumor necrosis factor alpha and were boosted with a mixture of four recombinant, attenuated vaccinia virus strains encoding the four P. knowlesi antigens. Two weeks after boosting, the geometric mean immunofluorescence titers in the immunized groups against sporozoites and infected erythrocytes ranged from 160 to 8,096 and from 1,810 to 5,120, respectively. The geometric mean anti-P. knowlesi circumsporozoite protein (PkCSP) titers ranged from 1,761 to 24,242. Peripheral blood mononuclear cells (PBMC) from the immunized monkeys produced gamma interferon (IFN-γ) in response to incubation with pooled peptides from the PkCSP at frequencies of 10 to 571 spot-forming cells/106 PBMC. Following challenge with 100 infectious P. knowlesi sporozoites, 2 of 11 immunized monkeys were sterilely protected, and 7 of the 9 infected monkeys resolved their parasitemias spontaneously. In contrast, all four controls became infected and required treatment for overwhelming parasitemia. Early protection was strongly associated with IFN-γ responses against a pool of peptides from the preerythrocytic-stage antigen, PkCSP. These findings demonstrate that a multistage, multiantigen, DNA priming and poxvirus boosting vaccine regimen can protect nonhuman primates from an otherwise lethal malaria sporozoite challenge.


Molecular and Biochemical Parasitology | 2001

Determining liver stage parasite burden by real time quantitative PCR as a method for evaluating pre-erythrocytic malaria vaccine efficacy

Adam A. Witney; Denise L. Doolan; Robert M. Anthony; Walter R. Weiss; Stephen L. Hoffman; Daniel J. Carucci

The detection and quantitation of blood stage parasitaemia is typically used as a surrogate endpoint for estimating the efficacy of vaccines targeted against the hepatic stage, as well as the erythrocytic stage, of the parasite. However, this does not provide an adequate means of evaluating the efficacy of vaccines, which may be only partially effective at the liver-stage. This is a particular concern for effective evaluation of immune enhancement strategies for candidate pre-erythrocytic stage vaccines. Here, we have developed and validated a method for detecting and quantitating liver stage parasites, using the TaqMan fluorescent real-time quantitative PCR system (PE Applied Biosystems). This method uses TaqMan primers designed to the Plasmodium yoelii 18S rRNA gene and rodent GAPDH to amplify products from infected mouse liver cDNA. The technique is highly reproducible as demonstrated with plasmid controls and capable of efficiently quantitating liver-stage parasite burden following a range of sporozoite challenge doses in strains of mice, which differ in their susceptibility to sporozoite infection. We have further demonstrated the capacity of this technique to evaluate the efficacy of a range of pre-erythrocytic stage vaccines. Our data establish this quantitative real-time PCR assay to be a fast and reproducible way of accurately assessing liver stage parasite burden and vaccine efficacy in rodent malaria models.


PLOS ONE | 2012

Protective CD8+ T lymphocytes in primates immunized with malaria sporozoites.

Walter R. Weiss; Chengyong George Jiang

Live attenuated malaria vaccines are more potent than the recombinant protein, bacterial or viral platform vaccines that have been tested, and an attenuated sporozoite vaccine against falciparum malaria is being developed for humans. In mice, attenuated malaria sporozoite vaccines induce CD8+ T cells that kill parasites developing in the liver. We were curious to know if CD8+ T cells were also important in protecting primates against malaria. We immunized 9 rhesus monkeys with radiation attenuated Plasmodium knowlesi sporozoites, and found that 5 did not develop blood stage infections after challenge with live sporozoites. We then injected 4 of these protected monkeys with cM-T807, a monoclonal antibody to the CD8 molecule which depletes T cells. The fifth monkey received equivalent doses of normal IgG. In 3 of the 4 monkeys receiving cM-T807 circulating CD8+ T cells were profoundly depleted. When re-challenged with live sporozoites all 3 of these depleted animals developed blood stage malaria. The fourth monkey receiving cM-T807 retained many circulating CD8+ T cells. This monkey, and the vaccinated monkey receiving normal IgG, did not develop blood stage malaria at re-challenge with live sporozoites. Animals were treated with antimalarial drugs and rested for 4 months. During this interval CD8+ T cells re-appeared in the circulation of the depleted monkeys. When all vaccinated animals received a third challenge with live sporozoites, all 5 monkeys were once again protected and did not develop blood stage malaria infections. These data indicate that CD8+ T cells are important effector cells protecting monkeys against malaria sporozoite infection. We believe that malaria vaccines which induce effector CD8+ T cells in humans will have the best chance of protecting against malaria.


The Journal of Experimental Biology | 2003

Utilization of genomic sequence information to develop malaria vaccines

Denise L. Doolan; Joao C. Aguiar; Walter R. Weiss; Alessandro Sette; Phil Felgner; David P. Regis; P. Quinones-Casas; John R. Yates; Peter L. Blair; Thomas L. Richie; Stephen L. Hoffman; Daniel J. Carucci

SUMMARY Recent advances in the fields of genomics, proteomics and molecular immunology offer tremendous opportunities for the development of novel interventions against public health threats, including malaria. However, there is currently no algorithm that can effectively identify the targets of protective T cell or antibody responses from genomic data. Furthermore, the identification of antigens that will stimulate the most effective immunity against the target pathogen is problematic, particularly if the genome is large. Malaria is an attractive model for the development and validation of approaches to translate genomic information to vaccine development because of the critical need for effective anti-malarial interventions and because the Plasmodium parasite is a complex multistage pathogen targeted by multiple immune responses. Sterile protective immunity can be achieved by immunization with radiation-attenuated sporozoites, and anti-disease immunity can be induced in residents in malaria-endemic areas. However, the 23 Mb Plasmodium falciparum genome encodes more than 5300 proteins, each of which is a potential target of protective immune responses. The current generation of subunit vaccines is based on a single or few antigens and therefore might elicit too narrow a breadth of response. We are working towards the development of a new generation vaccine based on the presumption that duplicating the protection induced by the whole organism may require a vaccine nearly as complex as the organism itself. Here, we present our strategy to exploit the genomic sequence of P. falciparum for malaria vaccine development.


Vaccine | 1997

Strategy for development of a pre-erythrocytic Plasmodium falciparum DNA vaccine for human use

Stephen L. Hoffman; Denise L. Doolan; Martha Sedegah; Joao C. Aguiar; Ruobing Wang; Anita Malik; Robert A. Gramzinski; Walter R. Weiss; Peter Hobart; Jon Norman; Michal Margalith; Richard C. Hedstrom

Data generated in the Plasmodium yoelii rodent model indicated that plasmid DNA vaccines encoding the P.yoelii circumsporozoite protein (PyCSP) or 17 kDa hepatocyte erythrocyte protein (PyHEP17) were potent inducers of protective CD8+ T cell responses directed against infected hepatocytes. Immunization with a mixture of these plasmids circumvented the genetic restriction of protective immunity and induced additive protection. A third DNA vaccine encoding the P. yoelii sporozoite surface protein 2 (PySSP2) also induced protection. The P. falciparum genes encoding the homologues of these three protective P. yoelii antigens as well as another P. falciparum gene encoding a protein that is expressed in infected hepatocytes have been chosen for the development of a human vaccine. The optimal plasmid constructs for human use will be selected on the basis of immunogenicity data generated in mice and nonhuman primates. We anticipate that optimization of multi-gene P. falciparum DNA vaccines designed to protect against malaria by inducing CD8+ T cells that target infected hepatocytes will require extensive clinical trials during the coming years.

Collaboration


Dive into the Walter R. Weiss's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Richard C. Hedstrom

Naval Medical Research Center

View shared research outputs
Top Co-Authors

Avatar

Denise L. Doolan

Henry M. Jackson Foundation for the Advancement of Military Medicine

View shared research outputs
Top Co-Authors

Avatar

Daniel J. Carucci

Henry M. Jackson Foundation for the Advancement of Military Medicine

View shared research outputs
Top Co-Authors

Avatar

Dennis M. Klinman

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Joao C. Aguiar

Naval Medical Research Center

View shared research outputs
Top Co-Authors

Avatar

Sanjai Kumar

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Yupin Charoenvit

Naval Medical Research Center

View shared research outputs
Top Co-Authors

Avatar

Anita Kumar

Naval Medical Research Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge