Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Waltraud C. Schrottmaier is active.

Publication


Featured researches published by Waltraud C. Schrottmaier.


Arteriosclerosis, Thrombosis, and Vascular Biology | 2014

Platelets Mediate Oxidized Low-Density Lipoprotein–Induced Monocyte Extravasation and Foam Cell Formation

Sigrun Badrnya; Waltraud C. Schrottmaier; Julia B. Kral; Koon-Chu Yaiw; Ivo Volf; Gernot Schabbauer; Cecilia Söderberg-Nauclér; Alice Assinger

Objective— A growing body of evidence indicates that platelets contribute to the onset and progression of atherosclerosis by modulating immune responses. We aimed to elucidate the effects of oxidized low-density lipoprotein (OxLDL) on platelet–monocyte interactions and the consequences of these interactions on platelet phagocytosis, chemokine release, monocyte extravasation, and foam cell formation. Approach and Results— Confocal microscopy and flow cytometric analysis revealed that in vitro and in vivo stimulation with OxLDL resulted in rapid formation of platelet–monocyte aggregates, with a preference for CD16+ monocyte subsets. This platelet–monocyte interaction facilitated OxLDL uptake by monocytes, in a process that involved platelet CD36–OxLDL interaction, release of chemokines, such as CXC motif ligand 4, direct platelet–monocyte interaction, and phagocytosis of platelets. Inhibition of cyclooxygenase with acetylsalicylic acid and antagonists of ADP receptors, P2Y1 and P2Y12, partly abrogated OxLDL-induced platelet–monocyte aggregates and platelet-mediated lipid uptake in monocytes. Platelets also enhanced OxLDL-induced monocyte transmigration across an endothelial monolayer via direct interaction with monocytes in a transwell assay. Importantly, in LDLR−/− mice, platelet depletion resulted in a significant decrease of peritoneal macrophage recruitment and foam cell formation in a thioglycollate-elicited peritonitis model. In platelet-depleted wild-type mice, transfusion of ex vivo OxLDL-stimulated platelets induced monocyte extravasation to a higher extent when compared with resting platelets. Conclusions— Our results on OxLDL-mediated platelet–monocyte aggregate formation, which promoted phenotypic changes in monocytes, monocyte extravasation and enhanced foam cell formation in vitro and in vivo, provide a novel mechanism for how platelets potentiate key steps of atherosclerotic plaque development and plaque destabilization.


Journal of Immunology | 2014

Macrophage PTEN Regulates Expression and Secretion of Arginase I Modulating Innate and Adaptive Immune Responses

Emine Sahin; Stefan Haubenwallner; Mario Kuttke; Isabella Kollmann; Angela Halfmann; Alexander B. Dohnal; Li Chen; Paul C. Cheng; Bastian Hoesel; Elisa Einwallner; Julia Brunner; Julia B. Kral; Waltraud C. Schrottmaier; Kathrin Thell; Victoria Saferding; Stephan Blüml; Gernot Schabbauer

The activation of innate immune cells triggers numerous intracellular signaling pathways, which require tight control to mount an adequate immune response. The PI3K signaling pathway is intricately involved in innate immunity, and its activation dampens the expression and release of proinflammatory cytokines in myeloid cells. These signaling processes are strictly regulated by the PI3K antagonist, the lipid phosphatase, PTEN, a known tumor suppressor. Importantly, PTEN is responsible for the elevated production of cytokines such as IL-6 in response to TLR agonists, and deletion of PTEN results in diminished inflammatory responses. However, the mechanisms by which PI3K negatively regulates TLR signaling are only partially resolved. We observed that Arginase I expression and secretion were markedly induced by PTEN deletion, suggesting PTEN−/− macrophages were alternatively activated. This was mediated by increased expression and activation of the transcription factors C/EBPβ and STAT3. Genetic and pharmacologic experimental approaches in vitro, as well as in vivo autoimmunity models, provide convincing evidence that PI3K/PTEN-regulated extracellular Arginase I acts as a paracrine regulator of inflammation and immunity.


Transfusion Medicine and Hemotherapy | 2016

Platelet Interaction with Innate Immune Cells.

Julia B. Kral; Waltraud C. Schrottmaier; Manuel Salzmann; Alice Assinger

Beyond their traditional role in haemostasis and thrombosis, platelets are increasingly recognised as immune modulatory cells. Activated platelets and platelet-derived microparticles can bind to leukocytes, which stimulates mutual activation and results in rapid, local release of platelet-derived cytokines. Thereby platelets modulate leukocyte effector functions and contribute to inflammatory and immune responses to injury or infection. Platelets enhance leukocyte extravasation, differentiation and cytokine release. Platelet-neutrophil interactions boost oxidative burst, neutrophil extracellular trap formation and phagocytosis and play an important role in host defence. Platelet interactions with monocytes propagate their differentiation into macrophages, modulate cytokine release and attenuate macrophage functions. Depending on the underlying pathology, platelets can enhance or diminish leukocyte cytokine production, indicating that platelet-leukocyte interactions represent a fine balanced system to restrict excessive inflammation during infection. In atherosclerosis, platelet interaction with neutrophils, monocytes and dendritic cells accelerates key steps of atherogenesis by promoting leukocyte extravasation and foam cell formation. Platelet-leukocyte interactions at sites of atherosclerotic lesions destabilise atherosclerotic plaques and promote plaque rupture. Leukocytes in turn also modulate platelet function and production, which either results in enhanced platelet destruction or increased platelet production. This review aims to summarise the key effects of platelet-leukocyte interactions in inflammation, infection and atherosclerosis.


Arteriosclerosis, Thrombosis, and Vascular Biology | 2014

Human Cytomegalovirus–Platelet Interaction Triggers Toll-Like Receptor 2–Dependent Proinflammatory and Proangiogenic Responses

Alice Assinger; Julia B. Kral; Koon Chu Yaiw; Waltraud C. Schrottmaier; Ewa Kurzejamska; Yajuan Wang; Abdul-Aleem Mohammad; Piotr Religa; Afsar Rahbar; Gernot Schabbauer; Lynn M. Butler; Cecilia Söderberg-Nauclér

Objective—Human cytomegalovirus (HCMV) is a widespread pathogen that correlates with various clinical complications, including atherosclerosis. HCMV is released into the circulation during primary infection and periodic viral reactivation, allowing virus–platelet interactions. Platelets are important in the onset and development of atherosclerosis, but the consequences of platelet–HCMV interactions are unclear. Approach and Results—We studied the effects of HCMV–platelet interactions in blood from healthy donors using the purified clinical HCMV isolate VR1814. We demonstrated that HCMV bound to a Toll-like receptor (TLR) 2–positive platelet subpopulation, which resulted in signal transduction, degranulation, and release of proinflammatory CD40L and interleukin-1&bgr; and proangiogenic vascular endothelial–derived growth factor. In mice, murine CMV activated wild-type but not TLR2-deficient platelets. However, supernatant from murine CMV–stimulated wild-type platelets also activated TLR2-deficient platelets, indicating that activated platelets generated soluble mediators that triggered further platelet activation, independent of TLR2 expression. Inhibitor studies, using ADP receptor antagonists and apyrase, revealed that ADP release is important to trigger secondary platelet activation in response to HCMV. HCMV-activated platelets rapidly bound to and activated neutrophils, supporting their adhesion and transmigration through endothelial monolayers. In an in vivo model, murine CMV induced systemic upregulation of platelet–leukocyte aggregates and plasma vascular endothelial–derived growth factor in mice and showed a tendency to enhance neutrophil extravasation in a TLR2-dependent fashion. Conclusions—HCMV is a well-adapted pathogen that does not induce immediate thrombotic events. However, HCMV–platelet interactions lead to proinflammatory and proangiogenic responses, which exacerbate tissue damage and contribute to atherogenesis. Therefore, platelets might contribute to the effects of HCMV in accelerating atherosclerosis.


Thrombosis and Haemostasis | 2015

Aspirin and P2Y12 Inhibitors in platelet-mediated activation of neutrophils and monocytes

Waltraud C. Schrottmaier; Julia B. Kral; Sigrun Badrnya; Alice Assinger

Platelets are key players in haemostasis and represent a pivotal link between inflammation, immunity and atherogenesis. Depending on the (patho)physiological environment platelets modulate various leukocyte functions via release of inflammatory mediators and direct cell-cell interactions. Elevated levels of circulating platelet-leukocyte aggregates are found in patients suffering from several thrombotic or inflammatory conditions. Platelet-monocyte and platelet-neutrophil interaction can trigger pro- and anti-inflammatory responses and modulate effector functions of all leukocyte subpopulations. These platelet-mediated immune responses have implications for the progression of cardiovascular diseases and also play a crucial role during infections, cancer, transplantations and other inflammatory diseases of several organs. Antiplatelet therapy including the COX inhibitor aspirin and/or ADP receptor P2Y12 inhibitors such as clopidogrel, prasugrel and ticagrelor are the therapy of choice for various cardiovascular complications. Both aspirin and P2Y12 inhibitors attenuate platelet-leukocyte interactions, thereby also modulating immune responses. This may have beneficial effects in some pathological conditions, while it might be detrimental in others. This review aims to summarise the current knowledge on platelet-leukocyte interactions and the impact of aspirin and P2Y12 inhibition on platelet-mediated immune responses and to give an overview on the effects of antiplatelet therapy on platelet-leukocyte interplay in various diseases.


Scientific Reports | 2016

Sustained PI3K Activation exacerbates BLM-induced Lung Fibrosis via activation of pro-inflammatory and pro-fibrotic pathways

Julia B. Kral; Mario Kuttke; Waltraud C. Schrottmaier; Birgit Birnecker; Joanna Warszawska; Christina Wernig; Hannah Paar; Manuel Salzmann; Emine Sahin; Julia Brunner; Christoph H. Österreicher; Sylvia Knapp; Alice Assinger; Gernot Schabbauer

Idiopathic pulmonary fibrosis (IPF) is a life-threatening disease with limited treatment options. Additionally, the lack of a complete understanding of underlying immunological mechanisms underscores the importance of discovering novel options for therapeutic intervention. Since the PI3K/PTEN pathway in myeloid cells influences their effector functions, we wanted to elucidate how sustained PI3K activity induced by cell-type specific genetic deficiency of its antagonist PTEN modulates IPF, in a murine model of bleomycin-induced pulmonary fibrosis (BIPF). We found that myeloid PTEN deficient mice (PTENMyKO), after induction of BIPF, exhibit increased TGF-β1 activation, mRNA expression of pro-collagens and lysyl oxidase as well as augmented collagen deposition compared to wild-type littermates, leading to enhanced morbidity and decreased survival. Analysis of alveolar lavage and lung cell composition revealed that PTENMyKO mice exhibit reduced numbers of macrophages and T-cells in response to bleomycin, indicating an impaired recruitment function. Interestingly, we found dysregulated macrophage polarization as well as elevated expression and release of the pro-fibrotic cytokines IL-6 and TNF-α in PTENMyKO mice during BIPF. This might point to an uncontrolled wound healing response in which the inflammatory as well as tissue repair mechanisms proceed in parallel, thereby preventing resolution and at the same time promoting extensive fibrosis.


Hepatology | 2016

The profile of platelet α‐granule released molecules affects postoperative liver regeneration

Patrick Starlinger; Stefanie Haegele; Florian Offensperger; Lukas Oehlberger; David Pereyra; Julia B. Kral; Waltraud C. Schrottmaier; Sigrun Badrnya; Thomas Reiberger; Arnulf Ferlitsch; Judith Stift; Florian Luf; Christine Brostjan; Thomas Gruenberger; Alice Assinger

Platelets promote liver regeneration through site‐specific serotonin release from dense granules, triggering proliferative signaling in hepatocytes. However, the effects of factors derived from platelet α‐granules on liver regeneration are unclear, because α‐granules contain bioactive molecules with opposing functions. Because α‐granule molecules are stored in separate compartments, it has been suggested that platelets selectively release their α‐granule content dependent on the environmental stimulus. Therefore, we investigated the pattern of circulating α‐granule molecules during liver regeneration in 157 patients undergoing partial hepatectomy. We measured plasma levels of α‐granule‐derived factors in the liver vein at the end of liver resection, as well as on the first postoperative day. We observed a rapid accumulation of platelets within the liver after induction of liver regeneration. Platelet count and P‐selectin (a ubiquitous cargo of α‐granules) were not associated with postoperative liver dysfunction. However, low plasma levels of vascular endothelial growth factor (VEGF), but high levels of thrombospondin 1 (TSP‐1), predicted liver dysfunction after resection. Patients with an unfavorable postoperative α‐granule release profile (high TSP‐1/low VEGF) showed substantially worse postoperative clinical outcomes. The unfavorable postoperative α‐granule release profile was associated with increased postoperative portal venous pressure and von Willebrand factor antigen levels as a marker for intrahepatic endothelial dysfunction. Conclusion: The postoperative profile of circulating platelet‐derived factors correlates with the ability of the remnant liver to regenerate. Portal venous pressure and intrahepatic endothelial dysfunction might account for the selective granule release profile. Selective modulation of platelet α‐granule release in patients may represent an attractive target for therapeutic interventions to improve liver regeneration and clinical outcomes after partial hepatectomy. (Hepatology 2016;63:1675‐1688)


Carcinogenesis | 2014

Fibroblast growth factor receptor 4: a putative key driver for the aggressive phenotype of hepatocellular carcinoma

Christine Gauglhofer; Jakob Paur; Waltraud C. Schrottmaier; Bettina Wingelhofer; Daniela Huber; Isabelle Naegelen; Christine Pirker; Thomas Mohr; Christine Heinzle; Klaus Holzmann; Brigitte Marian; Rolf Schulte-Hermann; Walter Berger; Georg Krupitza; Michael Grusch; Bettina Grasl-Kraupp

Recently, we found upregulation of fibroblast growth factor receptor 4 (FGFR4) in a subset of hepatocellular carcinoma (HCC). Here, we provide mechanistic insight into the role of FGFR4-mediated signalling for the aggressive behaviour of HCC cells. To overexpress FGFR4, hepatoma/hepatocarcinoma cells were transfected with a construct coding for FGFR4. For downmodulation of endogenous FGFR4, we used small interfering RNA or adenoviral infection with dominant-negative FGFR4 constructs being either kinase dead (kdFGFR4) or coding for the autoinhibitory soluble domain (solFGFR4). FGFR4 overexpression in non-tumourigenic hepatocarcinoma cells significantly reduced cell-matrix adhesion, enabled cells to grow anchorage-independently in soft agar, to disintegrate the lymph-/blood-endothelial barrier for intra-/extravasation of tumour cells and to form tumours in SCID mice. Transcriptome analysis revealed altered expression of genes involved in cell-matrix interactions. Conversely, in highly tumourigenic cell lines, kdFGFR4 or solFGFR4 lowered the proportion of cells in S phase of the cell cycle, enhanced the G0/G1 and G2/M-phase proportions, reduced anchorage-independent growth in vitro and attenuated disintegration of the lymph-/blood-endothelium and tumour formation in vivo. These findings were confirmed by altered expression profiles of genes being important for late stages of cell division. Deregulated FGFR4 expression appears to be one of the key drivers of the malignant phenotype of HCC cells. Accordingly, blockade of FGFR4-mediated signalling by soluble dominant-negative constructs, like solFGFR4, may be a feasible and promising therapeutic approach to antagonize aggressive behaviour of hepatoma/hepatocarcinoma cells.


Transfusion | 2015

Comparison of patient intake of ticagrelor, prasugrel, or clopidogrel on restoring platelet function by donor platelets

Gisela Scharbert; Léonore Wetzel; Waltraud C. Schrottmaier; Julia B. Kral; Thomas Weber; Alice Assinger

Bleeding complications are a common side effect in patients under dual antiplatelet (anti‐PLT) therapy. PLT transfusion provides a treatment option for these patients. However it is currently unclear if, and to what extent, P2Y12 inhibitors influence PLT function of donor PLTs and if patients taking these medications are likely to benefit from PLT transfusions.


Atherosclerosis | 2014

MicroRNA miR-320a modulates induction of HO-1, GCLM and OKL38 by oxidized phospholipids in endothelial cells

Waltraud C. Schrottmaier; Olga Oskolkova; Gernot Schabbauer; Taras Afonyushkin

OBJECTIVE Oxidized phospholipids (OxPLs), which are highly abundant in atherosclerotic lesions, are known to induce electrophilic stress response (ESR). ESR induces cytoprotective genes via the NF-E2-related factor 2 (NRF2) transcription factor. In order to get further insight into the mechanisms of ESR, we studied the role of microRNA (miR)-320a in induction of NRF2-dependent genes by OxPLs. METHODS Microarray profiling and qRT-PCR methods were used for measurements of mRNA and miRNA levels. miR-320a levels were changed by transfection with synthetic oligonucleotides. Protein analysis was performed by Western blotting. The functional activity of NRF2 was measured by DNA-binding ELISA. RESULTS Oxidized palmitoyl-arachidonoyl-phosphatidylcholine (OxPAPC) induced miR-320a in endothelial cells. Induction of HO-1, OKL38 and GCLM mRNAs by OxPAPC and sulforaphane was attenuated upon knockdown of miR-320a. In contrast, transfection of ECs with miR-320a mimic oligonucleotide potentiated the effects of OxPAPC and sulforaphane on induction of HO-1, OKL38 and GCLM mRNAs. OxPAPC-induced p38 activation, levels of NRF2 protein and its ability to bind to consensus NRF2 DNA binding site were elevated in ECs transfected with miR-320a mimic. miR-320a positively regulated induction of VEGF mRNA by OxPAPC. Levels of miR-320a and HO-1 and OKL38 mRNAs were elevated in aortas of ApoE knockout mice fed with high fat diet. Manipulation of miR-320a level in ECs did not affect ability of OxPAPC to induce IL-8, COX-2 and MCP-1. CONCLUSION miR-320a plays important role in induction of expression of HO-1, GCLM and OKL38 upon ESR induced either by OxPAPC or sulforaphane. These observations propose a general role of miR-320a in control of ESR induced by different electrophilic agents.

Collaboration


Dive into the Waltraud C. Schrottmaier's collaboration.

Top Co-Authors

Avatar

Alice Assinger

Medical University of Vienna

View shared research outputs
Top Co-Authors

Avatar

Julia B. Kral

Medical University of Vienna

View shared research outputs
Top Co-Authors

Avatar

Gernot Schabbauer

Medical University of Vienna

View shared research outputs
Top Co-Authors

Avatar

Manuel Salzmann

Medical University of Vienna

View shared research outputs
Top Co-Authors

Avatar

Johannes A. Schmid

Medical University of Vienna

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Bernd Jilma

Medical University of Vienna

View shared research outputs
Top Co-Authors

Avatar

Bettina Grasl-Kraupp

Medical University of Vienna

View shared research outputs
Top Co-Authors

Avatar

Brigitte Marian

Medical University of Vienna

View shared research outputs
Top Co-Authors

Avatar

Christine Brostjan

Medical University of Vienna

View shared research outputs
Researchain Logo
Decentralizing Knowledge