Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Gernot Schabbauer is active.

Publication


Featured researches published by Gernot Schabbauer.


Arteriosclerosis, Thrombosis, and Vascular Biology | 2004

PI3K-Akt Pathway Suppresses Coagulation and Inflammation in Endotoxemic Mice

Gernot Schabbauer; Michael Tencati; Brian Pedersen; Rafal Pawlinski; Nigel Mackman

Objective—In endotoxemia, lipopolysaccharide (LPS) induces a systemic inflammatory response and intravascular coagulation. Monocytes orchestrate the innate immune response to LPS by expressing a variety of pro-inflammatory cytokines, such as tumor necrosis factor-α (TNF-α), and the procoagulant molecule, tissue factor (TF). In this study, we analyzed the role of the phosphoinositide 3-kinase (PI3K)-Akt pathway in the activation of coagulation and the innate immune response in a mouse model of endotoxemia. Methods and Results—Wortmannin and LY294002 were used to inhibit the PI3K-Akt pathway. We found that wortmannin inhibited LPS-induced Akt phosphorylation in blood cells. Inhibition of the PI3K-Akt pathway significantly increased TF mRNA expression in blood cells, TF antigen, and thrombin–antithrombin III levels in the plasma, and fibrin deposition in the liver of endotoxemic mice. Inhibition of the PI3K-Akt pathway also strongly enhanced LPS-induced cytokine expression and the levels of soluble E-selectin in the plasma, suggesting enhanced activation of both monocytes and endothelial cells. Wortmannin treatment also increased the number of macrophages in the liver and kidney of endotoxemic mice. Finally, wortmannin and LY294002 dramatically reduced the survival time of endotoxemic mice. Conclusions—These data suggest that the PI3K-Akt pathway suppresses LPS-induced inflammation and coagulation in endotoxemic mice.


Journal of Immunology | 2008

Genetic Analysis of the Role of the PI3K-Akt Pathway in Lipopolysaccharide-Induced Cytokine and Tissue Factor Gene Expression in Monocytes/Macrophages

James P. Luyendyk; Gernot Schabbauer; Michael Tencati; Todd Holscher; Rafal Pawlinski; Nigel Mackman

LPS stimulation of monocytes/macrophages induces the expression of genes encoding proinflammatory cytokines and the procoagulant protein, tissue factor. Induction of these genes is mediated by various signaling pathways, including mitogen-activated protein kinases, and several transcription factors, including Egr-1, AP-1, ATF-2, and NF-κB. We used a genetic approach to determine the role of the phosphatidylinositol-3-kinase (PI3K)-protein kinase B (Akt) pathway in the regulation of LPS signaling and gene expression in isolated macrophages and in mice. The PI3K-Akt pathway is negatively regulated by the phosphatase and tensin homologue (PTEN). We used peritoneal exudate cells from Pik3r1-deficient mice, which lack the p85α regulatory subunit of PI3K and have reduced PI3K activity, and peritoneal macrophages from PTENflox/flox/LysMCre mice (PTEN−/−), which have increased Akt activity. Analysis of LPS signaling in Pik3r1−/− and PTEN−/− cells indicated that the PI3K-Akt pathway inhibited activation of the ERK1/2, JNK1/2, and p38 mitogen-activated protein kinases and reduced the levels of nuclear Egr-1 protein and phosphorylated ATF-2. Modulating the PI3K-Akt pathway did not affect LPS-induced degradation of IκBα or NF-κB nuclear translocation. LPS induction of TNF-α, IL-6, and tissue factor gene expression was increased in Pik3r1−/− peritoneal exudate cells and decreased in PTEN−/− peritoneal macrophages compared with wild-type (WT) cells. Furthermore, LPS-induced inflammation and coagulation were enhanced in WT mice containing Pik3r1−/− bone marrow compared with WT mice containing WT bone marrow and in mice lacking the p85α subunit in all cells. Taken together, our results indicate that the PI3K-Akt pathway negatively regulates LPS signaling and gene expression in monocytes/macrophages.


Journal of Immunology | 2009

12/15-Lipoxygenase Counteracts Inflammation and Tissue Damage in Arthritis

Gerhard Krönke; Julia Katzenbeisser; Stefan Uderhardt; Mario M. Zaiss; Carina Scholtysek; Gernot Schabbauer; Alexander Zarbock; Marije I. Koenders; Roland Axmann; Jochen Zwerina; Hans W. Baenckler; Wim B. van den Berg; Reinhard E. Voll; Hartmut Kühn; Leo A. B. Joosten; Georg Schett

Eicosanoids are essential mediators of the inflammatory response and contribute both to the initiation and the resolution of inflammation. Leukocyte-type 12/15-lipoxygenase (12/15-LO) represents a major enzyme involved in the generation of a subclass of eicosanoids, including the anti-inflammatory lipoxin A4 (LXA4). Nevertheless, the impact of 12/15-LO on chronic inflammatory diseases such as arthritis has remained elusive. By using two experimental models of arthritis, the K/BxN serum-transfer and a TNF transgenic mouse model, we show that deletion of 12/15-LO leads to uncontrolled inflammation and tissue damage. Consistent with these findings, 12/15-LO-deficient mice showed enhanced inflammatory gene expression and decreased levels of LXA4 within their inflamed synovia. In isolated macrophages, the addition of 12/15-LO-derived eicosanoids blocked both phosphorylation of p38MAPK and expression of a subset of proinflammatory genes. Conversely, 12/15-LO-deficient macrophages displayed significantly reduced levels of LXA4, which correlated with increased activation of p38MAPK and an enhanced inflammatory gene expression after stimulation with TNF-α. Taken together, these results support an anti-inflammatory and tissue-protective role of 12/15-LO and its products during chronic inflammatory disorders such as arthritis.


Journal of Immunology | 2010

Oxidized Phospholipids Are More Potent Antagonists of Lipopolysaccharide than Inducers of Inflammation

Olga Oskolkova; Taras Afonyushkin; Beatrix Preinerstorfer; Wolfgang Bicker; Elena von Schlieffen; Eva Hainzl; Svitlana Demyanets; Gernot Schabbauer; Wolfgang Lindner; Alexandros D. Tselepis; Johann Wojta; Bernd R. Binder; Valery N. Bochkov

Polyunsaturated fatty acids are precursors of multiple pro- and anti-inflammatory molecules generated by enzymatic stereospecific and positionally specific insertion of oxygen, which is a prerequisite for recognition of these mediators by cellular receptors. However, nonenzymatically oxidized free and esterified polyunsaturated fatty acids also demonstrate activities relevant to inflammation. In particular, phospholipids containing oxidized fatty acid residues (oxidized phospholipids; OxPLs) were shown to induce proinflammatory changes in endothelial cells but paradoxically also to inhibit inflammation induced via TLR4. In this study, we show that half-maximal inhibition of LPS-induced elevation of E-selectin mRNA in endothelial cells developed at concentrations of oxidized 1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphocholine (OxPAPC) 10-fold lower than those required to induce proinflammatory response. Similar concentration difference was observed for other classes and molecular species of OxPLs. Upon injection into mice, OxPAPC did not elevate plasma levels of IL-6 and keratinocyte chemoattractant but strongly inhibited LPS-induced upregulation of these inflammatory cytokines. Thus, both in vitro and in vivo, anti-LPS effects of OxPLs are observed at lower concentrations than those required for their proinflammatory action. Quantification of the most abundant oxidized phosphatidylcholines by HPLC/tandem mass spectrometry showed that circulating concentrations of total oxidized phosphatidylcholine species are close to the range where they demonstrate anti-LPS activity but significantly lower than that required for induction of inflammation. We hypothesize that low levels of OxPLs in circulation serve mostly anti-LPS function and protect from excessive systemic response to TLR4 ligands, whereas proinflammatory effects of OxPLs are more likely to develop locally at sites of tissue deposition of OxPLs (e.g., in atherosclerotic vessels).


Arteriosclerosis, Thrombosis, and Vascular Biology | 2009

Multi-Hit Inhibition of Circulating and Cell-Associated Components of the Toll-Like Receptor 4 Pathway by Oxidized Phospholipids

Elena von Schlieffen; Olga Oskolkova; Gernot Schabbauer; Florian Gruber; Stephan Blüml; Melinda Genest; Alexandra Kadl; Claudia Marsik; Sylvia Knapp; Jesse Chow; Norbert Leitinger; Bernd R. Binder; Valery N. Bochkov

Objective—Oxidized phospholipids (OxPLs) that are abundant in atherosclerotic lesions are increasingly recognized as context-dependent lipid mediators demonstrating both pro- and antiinflammatory activities. Molecular mechanisms of their effects are largely unknown. Here we present novel information on the mechanisms whereby OxPLs modulate activation of TLR4 by lipopolysaccharide (LPS). Methods and Results—We show, using several cell types and various inflammatory genes as readouts, that different classes and molecular species of OxPLs do not stimulate TLR4 but exert prominent inhibitory effects on LPS-induced reactions. Our data demonstrate that binding of OxPLs to the LPS-binding protein (LBP) and CD14 prevents recognition of LPS by these proteins, thus impairing activation of TLR4. In addition, OxPLs inhibited LBP- and CD14-independent activation of TLR4 by the synthetic TLR4 agonist E6020 indicating that in parallel with LBP and CD14, OxPLs target cell-associated steps in TLR4 cascade. Conclusions—Our data suggest that OxPLs inhibit action of LPS via a multi-hit mechanism. These results support the notion that OxPLs are endogenous inhibitors of TLR4 produced in response to oxidative stress.


Journal of Immunology | 2010

Myeloid PTEN Promotes Inflammation but Impairs Bactericidal Activities during Murine Pneumococcal Pneumonia

Gernot Schabbauer; Ulrich Matt; Philipp Günzl; Joanna Warszawska; Tanja Furtner; Eva Hainzl; Immanuel Elbau; Ildiko Mesteri; Bianca Doninger; Bernd R. Binder; Sylvia Knapp

Phosphatidylinositol 3-kinase has been described as an essential signaling component involved in the chemotactic cell influx that is required to eliminate pathogens. At the same time, PI3K was reported to modulate the immune response, thus limiting the magnitude of acute inflammation. The precise role of the PI3K pathway and its endogenous antagonist phosphatase and tensin homolog deleted on chromosome 10 (PTEN) during clinically relevant bacterial infections is still poorly understood. Utilizing mice lacking myeloid cell-specific PTEN, we studied the impact of PTEN on the immune response to Streptococcus pneumoniae. Survival analysis disclosed that PTEN-deficient mice displayed less severe signs of disease and prolonged survival. The inflammatory response to S. pneumoniae was greatly reduced in macrophages in vitro and in vivo. Unexpectedly, neutrophil influx to the lungs was significantly impaired in animals lacking myeloid-cell PTEN, whereas the additional observation of improved phagocytosis by alveolar macrophages lacking PTEN ultimately resulted in unaltered lung CFUs following bacterial infection. Together, the absence of myeloid cell-associated PTEN and consecutively enhanced PI3K activity dampened pulmonary inflammation, reduced neutrophil influx, and augmented phagocytic properties of macrophages, which ultimately resulted in decreased tissue injury and improved survival during murine pneumococcal pneumonia.


Arteriosclerosis, Thrombosis, and Vascular Biology | 2014

Platelets Mediate Oxidized Low-Density Lipoprotein–Induced Monocyte Extravasation and Foam Cell Formation

Sigrun Badrnya; Waltraud C. Schrottmaier; Julia B. Kral; Koon-Chu Yaiw; Ivo Volf; Gernot Schabbauer; Cecilia Söderberg-Nauclér; Alice Assinger

Objective— A growing body of evidence indicates that platelets contribute to the onset and progression of atherosclerosis by modulating immune responses. We aimed to elucidate the effects of oxidized low-density lipoprotein (OxLDL) on platelet–monocyte interactions and the consequences of these interactions on platelet phagocytosis, chemokine release, monocyte extravasation, and foam cell formation. Approach and Results— Confocal microscopy and flow cytometric analysis revealed that in vitro and in vivo stimulation with OxLDL resulted in rapid formation of platelet–monocyte aggregates, with a preference for CD16+ monocyte subsets. This platelet–monocyte interaction facilitated OxLDL uptake by monocytes, in a process that involved platelet CD36–OxLDL interaction, release of chemokines, such as CXC motif ligand 4, direct platelet–monocyte interaction, and phagocytosis of platelets. Inhibition of cyclooxygenase with acetylsalicylic acid and antagonists of ADP receptors, P2Y1 and P2Y12, partly abrogated OxLDL-induced platelet–monocyte aggregates and platelet-mediated lipid uptake in monocytes. Platelets also enhanced OxLDL-induced monocyte transmigration across an endothelial monolayer via direct interaction with monocytes in a transwell assay. Importantly, in LDLR−/− mice, platelet depletion resulted in a significant decrease of peritoneal macrophage recruitment and foam cell formation in a thioglycollate-elicited peritonitis model. In platelet-depleted wild-type mice, transfusion of ex vivo OxLDL-stimulated platelets induced monocyte extravasation to a higher extent when compared with resting platelets. Conclusions— Our results on OxLDL-mediated platelet–monocyte aggregate formation, which promoted phenotypic changes in monocytes, monocyte extravasation and enhanced foam cell formation in vitro and in vivo, provide a novel mechanism for how platelets potentiate key steps of atherosclerotic plaque development and plaque destabilization.


Journal of Thrombosis and Haemostasis | 2011

Efficient phagocytosis of periodontopathogens by neutrophils requires plasma factors, platelets and TLR2

Alice Assinger; Markus Laky; Gernot Schabbauer; A. M. Hirschl; Elisabeth Buchberger; B. R. Binder; Ivo Volf

Summary.  Background: Periodontitis represents a chronic infection of supportive dental tissues by distinct gram‐negative bacteria. It is characterized by chronic and local inflammation as well as transient bacteremia with frequently occurring infections at distant sites. Objectives: The present work aimed to clarify the role of platelets and plasma factors in neutrophil interactions with the periodontopathogens A. actinomycetemcomitans and P. gingivalis. Methods: Phagocytosis, cell–cell interactions and activation of platelets and neutrophils in response to periodontopathogens were analyzed by flow cytometry, confocal microscopy and bacteria survival assay. Plasma factors, platelet signaling pathways and receptors involved in platelet‐neutrophil‐bacteria interactions were determined. The role of platelet and neutrophil TLR2 in phagocytosis was further evaluated in a murine TLR2 knockout model. Results: In the presence of plasma neutrophil‐mediated clearance of periodontopathogens is doubled due to opsonisation of bacteria. Platelets, which become activated by periodontopathogens, further enhance clearance of bacteria by 20%, via direct interaction with neutrophils. Plasma factors (e.g. CD14) are required for platelet activation, which is mainly TLR2 dependent and results in PI3K/Akt activation. In a murine TLR2 knockout model we prove that platelet TLR2 is important for formation of platelet–neutrophil aggregates and enhanced phagocytosis of periodontopathogens. In contrast, neutrophil TLR2 is not involved in platelet–neutrophil aggregate formation but is required for efficient phagocytosis. Conclusions: These data indicate that efficient elimination of periodontopathogens by neutrophils involves a complex interplay of plasma factors as well as platelets and requires functional TLR2. By enhancing neutrophil activation platelets contribute to immune defense but may also foster inflammation.


Cancer Research | 2006

Sustained Expression of Early Growth Response Protein-1 Blocks Angiogenesis and Tumor Growth

Markus Lucerna; Jiri Pomyje; Diana Mechtcheriakova; Alexandra Kadl; Florian Gruber; Martin Bilban; Yuri Sobanov; Gernot Schabbauer; Johannes M. Breuss; Oswald Wagner; Markus Bischoff; Matthias Clauss; Bernd R. Binder; Erhard Hofer

Transient induction of the transcription factor early growth response protein-1 (EGR-1) plays a pivotal role in the transcriptional response of endothelial cells to the angiogenic growth factors vascular endothelial growth factor (VEGF) and basic fibroblast growth factor (bFGF), which are produced by most tumors and are involved in the angiogenic switch. We report here that sustained expression of EGR-1 by recombinant adenoviruses in endothelial cells, however, leads to the specific induction of potent feedback inhibitory mechanisms, including strong up-regulation of transcriptional repressors, negative cell cycle check point effectors, proteins with established antiangiogenic activity, and several proapoptotic genes. Sustained EGR-1 expression consistently leads to an antiangiogenic state characterized by an altered responsiveness to VEGF and bFGF and a striking inhibition of sprouting and tubule formation in vitro. Furthermore, EGR-1-expressing viruses potently inhibit cell invasion and vessel formation in the murine Matrigel model and repress tumor growth in a murine fibrosarcoma model. We propose that gene therapy involving sustained EGR-1 expression may constitute a novel therapeutic principle in the treatment of cancer due to the simultaneous induction of multiple pathways of antiangiogenesis, growth arrest, and apoptosis induction in proliferating cells leading to preferential inhibition of angiogenesis and tumor growth.


Journal of Immunology | 2014

Macrophage PTEN Regulates Expression and Secretion of Arginase I Modulating Innate and Adaptive Immune Responses

Emine Sahin; Stefan Haubenwallner; Mario Kuttke; Isabella Kollmann; Angela Halfmann; Alexander B. Dohnal; Li Chen; Paul C. Cheng; Bastian Hoesel; Elisa Einwallner; Julia Brunner; Julia B. Kral; Waltraud C. Schrottmaier; Kathrin Thell; Victoria Saferding; Stephan Blüml; Gernot Schabbauer

The activation of innate immune cells triggers numerous intracellular signaling pathways, which require tight control to mount an adequate immune response. The PI3K signaling pathway is intricately involved in innate immunity, and its activation dampens the expression and release of proinflammatory cytokines in myeloid cells. These signaling processes are strictly regulated by the PI3K antagonist, the lipid phosphatase, PTEN, a known tumor suppressor. Importantly, PTEN is responsible for the elevated production of cytokines such as IL-6 in response to TLR agonists, and deletion of PTEN results in diminished inflammatory responses. However, the mechanisms by which PI3K negatively regulates TLR signaling are only partially resolved. We observed that Arginase I expression and secretion were markedly induced by PTEN deletion, suggesting PTEN−/− macrophages were alternatively activated. This was mediated by increased expression and activation of the transcription factors C/EBPβ and STAT3. Genetic and pharmacologic experimental approaches in vitro, as well as in vivo autoimmunity models, provide convincing evidence that PI3K/PTEN-regulated extracellular Arginase I acts as a paracrine regulator of inflammation and immunity.

Collaboration


Dive into the Gernot Schabbauer's collaboration.

Top Co-Authors

Avatar

Stephan Blüml

Medical University of Vienna

View shared research outputs
Top Co-Authors

Avatar

Emine Sahin

Medical University of Vienna

View shared research outputs
Top Co-Authors

Avatar

Nigel Mackman

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar

Birgit Niederreiter

Medical University of Vienna

View shared research outputs
Top Co-Authors

Avatar

Julia Brunner

Medical University of Vienna

View shared research outputs
Top Co-Authors

Avatar

Victoria Saferding

Medical University of Vienna

View shared research outputs
Top Co-Authors

Avatar

Mario Kuttke

Medical University of Vienna

View shared research outputs
Top Co-Authors

Avatar

Michael Tencati

Scripps Research Institute

View shared research outputs
Top Co-Authors

Avatar

Josef S Smolen

Medical University of Vienna

View shared research outputs
Top Co-Authors

Avatar

Kurt Redlich

Medical University of Vienna

View shared research outputs
Researchain Logo
Decentralizing Knowledge